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Central Field Approximation

The Hamiltonian between two
interacting particles takes the form

H = − ~2

2m1
∆1 +− ~2

2m2
∆2 + U(r)

where U(r) is the interacting potential.
If we introduce the variables

r = r2−r1 R = (m1r1+m2r2)/(m1+m2)

the Hamiltonian can be written

H = − ~2

2(m1 + m2)
∆R +− ~2

2µ
∆r +U(r)

where µ is the reduced
mass. The wave function
is then separable

Ψ(r1, r2) = ϕ(R)ψ(r) .

ψ(r) describes the
movement of a particle of
mass µ in a central field
U(r).



The CFA reduces the SE to a one dimension

The Schrödinger equation (SE) for a central field is

∆Ψ + (2µ/~2)[E − U(r)]Ψ = 0 .

Since angular momentum is conserved, it determines its angular
dependence and solutions are of the type

Ψ =
P`(r)

r
Y`m(θ, φ)

where Y`m(θ, φ) are the spherical harmonics. The SE is reduced to
a one dimension

d2P

dr 2
+

2µ

~2

[
E − U(r)− ~2

2µ

`(`+ 1)

r 2

]
P = 0

where the potential now contains a centrifugal term. The wave
function is completely determined by {E , `,m}.



In CFA, wave functions are expanded in partial waves
The spectroscopic notation is usually used to denote values of `:

` = {0, 1, 2, 3, 4, 5, 6, 7} = {s, p, d , f , g , h, i , k} .

A plane wave can be expanded in partial waves

exp (ikz) =
1

kr

∞∑
`=0

i `(2`+ 1)P`(cos θ) sin (kr − `π/2) (r →∞)

where P` are the Legendre polynomials.
For a Coulomb field (U = ±Z/r) and E ≤ 0 (bound spectrum),

En = − Z 2

2n2
n ≥ `+ 1

where n is the principal quantum number (integer). For E > 0
(continuum spectrum)

Rk` ∼
2

r
sin (kr + log (2kr)/k − `π/2 + δ`) (r →∞)

where δ` = argΓ(`+ 1− i/k) is known as the Coulomb phase.



Parity conservation: even or odd

Besides invariance to displacement and rotation, the Hamiltonian
of a closed system is also invariant to inversion which leads to a
QM conservation law: parity conservation (space symmetry under
reflexion). If P is the inversion operator

Pψ(r) = ψ(−r) ,

its eigenvalues are given by the equation

Pψ(r) = Pψ(r) .

If we take into consideration that

P2ψ = P2ψ = ψ ,

then P = ±1. That is, eigenfunctions are either of even or odd
parity.



Parity conservation: even or odd

The angular momentum operator is also invariant under inversion
(i.e. P and L commute). Therefore, the system has a definite
parity established simultaneously with the definite values of L and
M.
For a single particle, it may be shown that

P = (−1)` ,

and for a system of particles in a CFA where the mutual interaction
between particles is assumed weak, the total parity is given by

Ptot = (−1)
∑

i `i .



Spin leads to the Exclusion Principle
The total angular momentum of a particle contains two
components

j = l + s .

Let us consider a system of two identical particles at coordinates
xi = {ri, σi}. If the particles are exchanged, the wave functions
obey

ψ(x1, x2) = ±ψ(x2, x1)

Symmetric wave functions are obeyed by particles with integer spin
(bosons)

ψ(x1, x2) =
1√
2

[ψ1(x1)ψ2(x2) + ψ1(x2)ψ2(x1)]

and anti-symmetric wave functions are obeyed by particles with
half-integer spin (fermions)

ψ(x1, x2) =
1√
2

[ψ1(x1)ψ2(x2)− ψ1(x2)ψ2(x1)] .

If ψ1 = ψ2, ⇒ ψ(x1, x2) = 0 (Pauli Exclusion Principle).



Spin leads to the exchange interaction

Although the SE does not take into account particle spin, its
prediction power is not invalidated as the Coulomb interaction is
not spin dependent in the non-relativistic limit. The wave funtion
for two particles can be then be written

Ψ(x1, x2) = ϕ(r1, x2)χ(σ1, σ2)

There is, however, a peculiar energy dependence on spin which
originates in particle exchange. If the two particles are fermions
(spin 1/2), the complete wave function ψ = ϕχ must be
anti-symmetric with respect to exchange. Therefore, if ϕ is
symmetric, χ must be anti-symmetric and vice-versa. The energy
levels with a symmetric ϕ(r1, r2) only occur for total spin 0 (↑↓).
Level energies with anti-symmetric ϕ(r1, r2) must have a total spin
of 1 (↑↑). This interaction is referred to as the exchange
interaction.



Multi-electron atoms are also treated with the CFA

The starting point for the computations of multi-electron systems
is the central field approximation: each electron moves in an
effective spherically symmetric potential V (r) resulting from the
nucleus and the rest of the electrons. For a system with nuclear
charge Z and N electrons we must take into account:

1. The kinetic energy of the electrons and the potential energy
of the attractive, electrostatic Coulombic field of the nucleus
(assumed punctual and infinitely massive).

2. The electrostatic Colombic repulsion between the electrons.

3. The magnetic interaction of the electronic spin with their
orbit.

4. A collection of small effects: two-body magnetic interactions
(e.g. spin–spin), other relativistic effects (e.g. mass
corrrections), radiative corrections, nuclear corrections.



Multi-electron atoms

Neglecting relativistic interactions, the atomic Hamiltonian is

H =
N∑
i

(−1

2
∇2

i −
Z

ri
) +

N∑
i<j

1

rij

and the SE

HΨ(q1, q2, ..., qn) = E Ψ(q1, q2, ..., qn)

where qi = {ri, σi}. Ψ(q1, q2, ..., qn) must be completely
anti-symmetric with respect to exchange. Since H is spin
independent

Ψ(q1, q2, ..., qn) = ψ(r1, r2, ..., rN)χ(σ1, σ2, ..., σN)

⇒ Hψ(r1, r2, ..., rN) = Eψ(r1, r2, ..., rN) .

The SE is a non-separable partial differential equation in 3D.



Multi-electron atoms
Slater and Hartree proposed as a starting point an independent-
particle model in a central field approximation. Since 1/rij contains
a fairly large spherically symmetric component (screening)
S(r) =

∑
i Si (r), we define the potential

V (r) ≡ −Z

r
+ S(r) .

The Hamiltonian can then be written

H = Hc + H1

where

Hc =
N∑
i

hi =
N∑
i

−1

2
∇2

i + V (ri ) .

H1 =
N∑
i<j

1

rij
−

N∑
i

S(ri )



Multi-electron atoms
If we obviate H1, the SE reduces to

Hcψc =
N∑
i

−1

2
∇2

i + V (ri ) = Ecψc

which is separable in N equations. The solution takes the form of
an electron configuration

ψc = ua1(r1)ua2(r2)...uN(raN)

with ai = {ni`imi} and un`m = Pnl(r)r−1Y`m(θ, ϕ).

n = 1, 2, 3, ... (1)

` = 0, 1, 2, ..., n − 1 (2)

m = −`,−`+ 1, ..., 0, ...,+`− 1,+` (3)

Ec =
N∑
i

Eni `i (4)



Multi-electron atoms: corrections to the CFA

Electron correlation
The most important correction to Hc is

H1 =
N∑
i<j

1

rij
−

N∑
i

S(ri )

which gives rise to electron correlation effects. It is dealt with by the
method of configuration interaction

Ψ(LSπ) =
∑
j

Φj(SLπ)

where Φj(SLπ) represents a configuration function of the appropriate
symmetry. Similarly, for a mixture of bound and continuum states, the
close coupling expansion is used

Ψ(LSπ) =
∑
i

χiθi +
∑
j

Φj(SLπ)

where χi are the target eigenfunctions.



Multi-electron atoms: corrections to the CFA



Multi-electron atoms: corrections to the CFA

Breit–Pauli relativistic corrections
A relativistic corrected Hamiltonian can be written

H = Hc + H1 + H1B + H2B

The one-body relativistic operators

H1B =
N∑
i

fi (mass) + fi (d) + fi (so) (5)

represent the spin–orbit interaction, fi (so), the non-fine-structure
mass variation, fi (mass), and one-body Darwin correction, fi (d).



Multi-electron atoms: corrections to the CFA

Breit–Pauli relativistic corrections
The two-body Breit operators are given by

H2B =
∑
i<j

gij(so) + gij(ss) + gij(css) + gij(d) + gij(oo)

where the fine-structure terms are gij(so) (spin-other-orbit and
mutual spin-orbit) and gij(ss) (spin-spin), and the
non-fine-structure counterparts are gij(css) (spin-spin contact),
gij(d) (two-body Darwin), and gij(oo) (orbit-orbit).
In a relativistic-correct context, L and S are no longer good
quantum numbers but the total angular momentum

J = L + S

is still conserved and J is a good quantum number. The relativistic
corrections lead to fine structure.



He-like systems (Figure from Porquet & Dubau 2000)



np1,5 configurations



np2,4 configurations (Fig. from Osterbrock & Ferland
2005)



np2,4 configurations: level structure of O I



np3 configurations (Fig. from Osterbrock & Ferland 2005)


