NEBULATOM Emission line objects in the Universe

Lecture 1 An introduction to ionized nebulae and their spectra

Grażyna Stasińska

Observatoire de Paris

Types of astronomical spectra

Kirchhoff 1860

how continuous, emission and absorption spectra can be produced from same source

The different types of emission-line objects

- HII regions
- Planetary nebulae (PNe)
- Ejecta from massive stars
- Supernovae
- Novae
- Young stellar objects
- Star forming galaxies
- Active galactic nuclei (AGNs) and quasars

The interest of emission lines

The mere presence of emission lines indicates

- the existence of gas
 - eg emission line galaxies contain gas in large amounts while
 - galaxies showing only a continuum with absorption features do not
- the existence of an ionizing agent (most emission lines come from ionized species)
 - hot star(s)
 - active nucleus
 - (shocks) ...

Emission lines are easy to detect and provide (easy) information on

- The gas chemical composition
- The nature of the ionizing source
- The gas dynamics $(v=d\lambda/\lambda)$
- The redshift (z=dλ/λ)

Hll regions in brief

- HII regions are signposts of recent star formation (less than 10⁷ yr ago)
- They are powered by one, a few, or a cluster of massive stars (depending on the resolution at which one is working)
- The nebulae have complex shapes resulting from the complex structure of the parent molecular clouds
- At late sages, stellar winds leave their imprint on the nebular morphologies
- The temperatures T* of the ionizing stars are between 35000- 55000K
- The gas density is typically 10³-10⁵ cm⁻³ for compact HII regions, and 10² cm⁻³ for giant extragalactic HII regions (GHRs)
- The velocity dispersions range from 10-20 km/sec to ~100 km/sec for GHRs

Examples of HII regions

N70 a Wind blown HII region in the LMC

M8 a bright HII region in the Milky Way

NGC 3603 a giant star forming region in the Milky Way

Starburst Region NGC 3603 (VLT ANTU + ISAAC)

ESO PR Photo 38a/99 (13 October 1999)

© European Southern Observatory

HII regions close ups

the Orion nebula

the internal dynamics of HII regions is extremely complicated

3D reconstruction of the Orion nebula

•

HII regions in galaxy context

Extragalactic HII region close-up

30 Dor in the LMC

Planetary Nebulae (PNe) in brief

- PN shapes have a rather large degree of symmetry
- Often, the amount of nebular gas is not sufficient to completely trap the stellar ionizing radiation (PNe are often density-bounded)
- The temperatures T* of the ionizing stars are between 35000- 200000K
- The lifetimes of PN are of about 10⁴ yr
- but PNe originate from stars which were born more than 10⁸ yr ago (up to ~10¹⁰yr)
- The gas density is typically 10³-10⁵ cm⁻³, but PN of lower density also exist
- The chemical composition of the PN envelopes is not identical to that of the cloud out of which the progenitor star was born
- The expansion velocities are typically of 15 40 km/sec

The evolution of low & intermediate mass stars 1-8 M_{\odot}

- Planetary nebulae result from the evolution of such stars
- all along the AGB, the star looses mass
- At the tip of the AGB a strong mass-loss episode occurs. The satr is cool and luminous
- A PN appears when the star gets sufficiently hot to ionize the surrounding gas
- it expands and gradually fades into the interstellar medium
- while the central star becomes a white dwarf

Evolution track of a 5M_☉ star in the HR diagram

planetary nebulae morphologies

NGC 6543

NGC 6543 R:G:B = log[NII]:log[OIII]:lin[OIII]

HST image of the bright core of the «cat eye » planetary nebula

NGC 6543

its bright core and spherical halo

NGC 6543

its bright core its spherical halo and its fluffy halo

The Helix planetary nebula

Ö

3D reconstitution

Ejecta from massive stars

- They are in many respects similar to planetary nebulae but they arise fom massive stars (mainly Wolf-Rayet stars)
- They are far less numerous than PNe (the number of massive stars is *** times less than that of intermediate mass stars), the duration of the strong mass-loss phenomenon is about 1 Myr
- They are confined to the thin Galactic disk, so their study is difficult
- Their chemical composition is that of the stellar ejecta but it can also be dominated by that of the swept-up interstellar medium
- It is not always easy to distinguish a nebula arising from a massive star from a PN

Ejecta from massive stars

NGC 7635, the Bubble Nebula, is being pushed out by the stellar wind of the massive central star BD+602522

the Eta Carinae nebula

Supernova remnants

- Are remainings from the explosion of stars in a supernova event
 - Type II SNe result from the core collapse of massive stars into a neutron star or a black hole
 - Type Ia SNe occur when a accreting white dwarf has reached a mass larger than 1.4M_o and suddenly collapses into a neutron star
- They contain nuclearly processed material from the stellar interior
- Their expansion velocities can be of thousands of km/sec
- They are most often shock ionized
- They emit a lot in X-rays

Supernova remnants

Puppis A in IR (WISE)

S147 in $H\alpha$

SN 1006 in X-rays (Chandra)

the Crab nebula Optical (HST)

Composite image of Kepler's SN X-ray (4-6 keV), Chandra X-ray (0.3-1.4 keV), Chandra Optical, HST IR, Spitzer

Supernova remnant spectra

Novae and related objects

- Are due to explosions occuring in the accretion disc of a close binary system containing an accreting whte dwarf.
- After the explosion, a nebula is seen, and quickly fades away (order of years)
- The masses are very small, the densities rather high
- It contains highly processed nuclear material

Nova V 603 Aquilae

Fig. 1: Photographs of the expanding envelope around the old nova V 603 Aquilae, taken at Mt. Wilson Observatory (from Mustel and Boyarchuk, 1970).

Nova V 603 Aquilae spectra

Fig. 3: Two selected IUE short wavelength spectrograms of V 603 Aql obtained at orbital phase 0.52 and during the eclipse at phase 0.94. Pronounced variations of the strengths of C IV (1550), Si IV (1400) and He II (1640) as well as of N IV] (1486) — but in an opposite sense — are clearly noticeable.

Protostars

- There are several phases in the lives of protostars where emission lines can be seen
 - Herbig-Haro objects
 - T-Tauri objects

Protostars: Herbig-Haro objects

- Emission from HH objects is caused by shock waves when they collide with the interstellar medium
- Velocities of hundreds of km/sec
- The new nebula in LDN 1415 A cry from the cradle of a lowluminosity source

Protostars: T Tauri objects

- Age between 10⁵ and 10⁸ yr
- Mass 0.5 to 3.0 ${
 m M}_{\odot}$
- losing mass via stellar winds with typical $v_{exp} = \sim 100$ km/s.

Star forming galaxies

- They are galaxies containing either HII regions or an active nucleus (or both)
- They can be either

 small mass galaxies dominated by one or a few giant HII regions (HII galaxies, blue compact galaxies). In this case they are of low « metallicity » (downsizing)

 Normal spiral galaxies containing many giant HII regions. The integrated spectrum of such galaxies is dominated by the giant HII regions in the inner zone, where the « metallicities » are moderate to large

• Spiral galaxies containing an active nucleus

Active galactic nuclei and quasars

- They are galaxies containing either HII regions or an active nucleus (or both
- They can be either
 - small mass galaxies dominated by one or a few giant HII regions (HII galaxies, blue compact galaxies). In this case they are of low « metallicity » (downsizing)
 - Normal spiral galaxies containing many giant HII regions. The integrated spectrum
 of such galaxies is dominated by the giant HII regions in the inner zone, where the
 « metallicities » are moderate to large
 - Spiral galaxies containing an active nucleus

Active galactic nuclei (AGN) and quasars

Ionization zone

boundary

NLR clouds (50-100 pc)

Seyfert 1

Active galactic nuclei (AGN) and quasars

active galactic nuclei (AGN) and quasars

the nucleus of M87, a giant elliptical galaxy

NGC 7742 a spiral galaxy with an active nucleus

The Most Distant Quasars Known

Temperatures, densities and sizes of diffuse astrophysical plasmas in the universe

Dopita & Sutherland 2003 Astrophysics of the Diffuse Universe