

Python for astronomers

Presentation

● Young language (1989, Guido van Rossum) but well
tested

● Already installed on Linux and OSX. You still may need
some upgrade.

● Huge community and web site (just Google “python
scientific pdf” to have a lot of manuals.

● A lot of packages:
– Numerical, graphical, scientific, GUI, SQL, HTML, etc tools

– Browse the pypi library: 28675 packages!

“best” configuration

● Python >= 2.6 (but not > 3)
● Ipython: interactive python
● Numpy: numerical tools, arrays, vectorization
● Matplotlib: graphical tools
● Scipy: scientific tools (integrations, inter- extra-

polation)
● → EPD is the easiest way

– Free distribution

– Academic distribution (more complete)

Interactive session

● Using ipython with the -- pylab option:
– Load numpy and matplotlib.pyplot as np and plt respectively. This is

the same as:
● import numpy as np
● Import matplotlib.pyplot as plt

– Configure the graphical output (backend) so that graphical windows
appears without efforts (otherwise a plt.show() call is needed)

– Some magic commands start with %:
● %run ex1 : execute what is in ex1.py on the main level
● %paste : paste what is in the clipboard to the session, dealing with the

indentation
● Others...

Hello world

Start (i)python.

print “Hello world!”

print(“Hello world!”) #python3 compatible

s = 'Hello world'

print(s)

Very quick look at python

Types

Int, real (float), complex, strings.
A = 3

print(type(A))

B = 4.5

print(type(B))

C = A * B

print(C, type(C))

Blocks

● Blocks are defined by indentation. Looks nice
and no needs for end :-)

● if, elif, else
● for X in list:
● while <condition>:
● List comprehension

– A = [i**2 for i in range(4)]

– print(A)

Functions, procedures, methods

● In a script or “on the fly”
def func1(x):

 print(x**3) # use TAB to indent

func1(3)

def func2(x):

 return(x**3)

print(func2(3))

In the file Test1.py:

import Test1

Or

run Test1

Functions parameters

Mandatory parameters and optional parameters
(default value):
def func3(x, y, z, a=0, b=0):

 return a + b * np.sqrt(x**2 + y**2 + z**2)

D = func3(3, 4, 5)

E = func3(3, 4, 5, 10, 100)

F = func3(x=3, y=4, z=5, a=10, b=100)

G = func3(3, 4, 5, a=10, 100) # ERROR!

H = func3(3, 4, 5, a=10, b=100)

I = func3(z=5, x=3, y=4) # quite risky!

Loading a program/script

● Import ex1: this will execute what is in ex1.py
in the namespace ex1.

● If a function f1() is defined in ex1.py, it is
accessible as ex1.f1() once test1 is imported:

import test1
print(test1.f1(3))
from test1 import f1
print(f1(3))
import test1 as tt # alias to the package
A = tt.f1(3)

● You can also execute the script test1:
%run test1.py
f1(3)
%whos

Command line help

● Once a package is imported, you can access all its
components by TAB after the last point:

import numpy as np
np.<TAB>
import pyneb as pn
pn.<TAB>

● You access the help for a given function/class by :
pn.Atom?

● This works for any object within ipython and goes
“recursively” inside the objects:

pn.Atom.<TAB>

pn.Atom.getA?

numpy

● Easy way to deal with arrays (1D, 2D, nD)
● Vectorization of most of the operations (not

parallel)

Visualization

Vizualisation

The web site of matplotlib is full of examples you can adapt
to your problem.

Obviously, you can add axes label, make log plots, change
colors, make multiplots in a single window, etc...

Object oriented

● Python allows to manage classes and the
corresponding objects (class instantiation).

● Methods (class functions) and attributes (class
variables) are accessed by:
name_of_the_object.method

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

