Multifunctional properties induced by chirality in crystalline materials

(Characterization of Mn_3PtN)

Daniel D. Torres Doctorado en Física Adv. Ilia D. Mikhailov PhD CoAdv. Andrés C. García PhD

Grupo de Física Computacional y Materia Condensada

Facultad de Ciencias

Escuela de Física

September 21, 2020

#LaUISqueQueremos

Universidad Industrial de Santander

CONTENTS

- 1. What's Chirality?
- 2. The Mn_3AN antiperovskites
 - 1. Magnetic frustration
 - 2. Magnetic phases and properties.
- 3. Characterization of Mn_3PtN
 - 1. Ionic and electronic optimization
 - 2. Convergence study
 - 3. Bands + DOS
 - 4. Partial DOS
 - 5. Weyl points

Universidad Industrial de Santander

Everyday objects can be chiral

There is chirality in crystals

(R) Chirality in molecules

Universidad Industrial de

The Mn_3AN antiperovskites

Magnetic frustration

Fig.1: Crystal structure of inverse perovskiteFig.2: Conantiferromagnets Mn3AN (A = Zn, Ga, etc.).expansion

Fig.2: Concept of negative thermal expansion (or NTE).

FIG. 1. Different noncollinear magnetic phases in AFM antiperovskite GaNMn₃: (a) Γ_{5g} , (b) Γ_{4g} , and (c) M-1. Red arrows denote magnetic moments.

Universidad Industrial de Santander

TABLE II. Calculated lattice parameters *a* and AHC σ_{xy} for different magnetic phases of *A*NMn₃ (*A* = Ga, Ni, Sn).

ANMn ₃	$a(\text{\AA})$			$\sigma_{xy} (\Omega^{-1} \text{ cm}^{-1})$		
	Γ_{5g}	Γ_{4g}	M-1	Γ_{5g}	Γ_{4g}	M-1
GaNMn ₃	3.87	3.87	3.82	0	40	377
NiNMn ₃	3.84	3.84		0	130	
SnNMn ₃	3.99	3.99		0	133	

PHYSICAL REVIEW MATERIALS 3, 024407 (2019)

Theory of magnetism-driven negative thermal expansion in inverse perovskite antiferromagnets

Masaya Kobayashi¹ and Masahito Mochizuki^{1,2} ¹Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Kanagawa 229-8558, Japan ²Department of Applied Physics, Waseda University, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

PHYSICAL REVIEW MATERIALS 3, 044409 (2019)

Anomalous Hall conductivity of noncollinear magnetic antiperovskites

Gautam Gurung, Ding-Fu Shao,^{*} Tula R. Paudel, and Evgeny Y. Tsymbal[†] Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0299, USA

(a) Γ_{5g} (b) Γ_{4g} magnetic orderings band structures and their symmetry operations

5

(a) Γ_{5g} (b) Γ_{4g} magnetic orderings band structures and their corresponding berry curvatures in (b) and (c)

PHYSICAL REVIEW MATERIALS 3, 044409 (2019)

Somos **el mejor** escenario de creación e innovación.

Universidad Industrial de Santander

Anomalous Hall conductivity of noncollinear magnetic antiperovskites

Gautam Gurung, Ding-Fu Shao,^{*} Tula R. Paudel, and Evgeny Y. Tsymbal[†] Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0299, USA

Characterization of Mn_3PtN

Ionic and electronic optimization

 $\Gamma_{\! 5g}\,$ and $\Gamma_{\! 4g}$ magnetic ordering in Mn_3PtN

Both structures are stable

After the optimization, we found the lattice parameter a = 3.973A. The value reported according to experimental characterization is a=3.969A.

Structure, magnetic properties and thermal expansion of Mn_3PtN_x ($0 \le x \le 1.0$) compounds

Ruihua Chou The High School Affiliated to Renmin University of China, Beijing 100080, P. R. China

Ying Sun^{*}, Huiqing Lu and Guang-Hong Lu Department of Physics, Beihang University, Beijing 100191, P. R. China *sunying@buaa.edu.cn

Universidad Industrial de Santander

Characterization of Mn_3PtN

Convergence study

Universidad Industrial de Santander

JOURNAL OF APPLIED PHYSICS 108, 113920 (2010)

Nature of the negative thermal expansion in antiperovskite compound Mn_3ZnN

B. Y. Qu and B. C. Pan^{a)} Department of Physics, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China

8

Bands + DOS

Characterization of Mn_3PtN

PHYSICAL REVIEW B 100, 094426 (2019)

Jniversidad

ndustrial de

Topology analysis for anomalous Hall effect in the noncollinear antiferromagnetic states of Mn₃AN (A = Ni, Cu, Zn, Ga, Ge, Pd, In, Sn, Ir, Pt)

Vu Thi Ngoc Huyen, 12,3 Michi-To Suzuki , 4,* Kunihiko Yamauchi, 1 and Tamio Oguchi 2 ¹Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan ²Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan ³Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

Santander

High AHC

Characterization of Mn_3PtN

9

p-d Hybridization

Universidad Industrial de Santander

Broadening of conduction band

#LaUISqueQueremos

iGracias!