CONSTRUCCIÓN DE TEORÍAS ESCALAR TENSOR DEGENERADAS DE ORDEN SUPERIOR CUADRÁTICAS

Universidad Industrial de Santander

Autor: Nestor Alberto Granados Hernández (UIS)
Director: Yeinzon Rodríguez García (UIS-UAN)

Codirector: Carlos Mauricio Nieto Guerrero(UIS)

Maestría en Física

• El proyecto fue basado principalmente en la propuesta dada por Langlois et al, para las teorías degeneradas de orden superior. [1]

[1] D. Langlois and K. Noui, Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability, Journal of Cosmology and Astroparticle Physics 1602, 034 (2016).

¿Por qué se trabaja con teorías que modifican la gravedad?

- Porque la Teoría de la Relatividad General es efectiva, por lo tanto se debe modificar a altas energías [2].
- Con una teoría modificada es posible dar explicaciones alternas a los problemas de inflación[3], energía oscura[4] o materia oscura[5].
- [2] J. F. Donoghue, General relativity as an effective field theory: The leading quantum corrections, Phys. Rev. D 50, (1994).
- [3] T. Kobayashi, M. Yamaguchi, and J. Yokoyama, Generalized G-Inflation: Inflation with the Most General Second-Order Field Equations, Progress of Theoretical Physics 126, 511 (2011).
- [4] R. Kase and S. Tsujikawa, Dark energy in scalar-vector-tensor theories, Journal of Cosmology and Astroparticle Physics 1811, 024 (2018).
- [5] M. T. Meehan and I. B. Whittingham, Dark matter relic density in scalar-tensor gravity revisited, Journal of Cosmology and Astroparticle Physics 1512, 011 (2015).

¿Cómo se puede modificar la gravedad?

Universidad Industrial de Santander

Teorema de Lovelock

Las ecuaciones de Einstein son las únicas ecuaciones de Euler-Lagrange de segundo orden posibles derivadas de una densidad escalar lagrangiana en cuatro dimensiones que se construye únicamente a partir de la métrica $L=L[g_{\mu\nu}]^{-a}$.[6]

La modificación se puede hacer

Incrementando la dimensionalidad del espacio tiempo

Aumentando el orden de las ecuaciones de movimiento Incluyendo campos extra a la métrica acoplados no mínimamente

Teorías de gravedad modificada

Fíg. 1. teoría de gravedad modificada

Teorías degeneradas

Universidad Industrial de Santander

- Una teoría es degenerada si el determinante de la matriz cinética es cero.
- · Modelo simplificado

$$L = \frac{a}{2}\ddot{\phi}^2 + b\ddot{\phi}\dot{q} + \frac{c}{2}\dot{q}^2 + \frac{1}{2}\dot{\phi}^2 - \frac{1}{2}\phi^2 - \frac{1}{2}q^2,\tag{1}$$

donde a, b, c son constantes

• Las ecuaciones de Euler-Lagrange son explícitamente de orden superior a dos:

$$\ddot{a} \phi + b \ddot{q} - \ddot{\phi} - \phi = 0, \tag{2}$$

$$b\dot{\phi} + c\ddot{q} + q = 0. \tag{3}$$

Teorías degeneradas

Universidad Industrial de Santander

• La matriz Hessiana

$$\mathcal{M} = \begin{pmatrix} \frac{\partial^2 L}{\partial v^a \partial v^b} \end{pmatrix} = \begin{pmatrix} a & b \\ b & c \end{pmatrix}, \tag{4}$$

- Se dice que un sistema es degenerado cuando det M= 0, implicando que $ac b^2 = 0$.
- Se obtiene el sistema de ecuaciones de Euler-Lagrange que muestra que son implícitamente de hasta segundo orden

$$\ddot{\phi} + \frac{b}{c}\dot{q} + \phi = 0,\tag{5}$$

$$\left(1 - \frac{b^2}{c^2}\right)\ddot{q} - \frac{b}{c}\dot{\phi} + \frac{1}{c}q = 0.$$

Somos **el mejor** escenario de creación e innovación.

(6)

La dinámica es gobernada por la acción

$$S[g, \phi] \equiv \int \sqrt{|g|} (f^{(4)}R + C^{\mu\nu\rho\sigma}\nabla_{\mu}\nabla_{\nu}\phi\nabla_{\rho}\nabla_{\sigma}\phi),$$
 (7)

• Las ecuaciones de movimiento del campo ϕ son

$$\frac{\delta C^{\mu\nu\rho\sigma}}{\delta \phi} \phi_{\mu\nu} \phi_{\rho\sigma} - \nabla_{\alpha} \left(\frac{\delta C^{\mu\nu\rho\sigma}}{\delta \phi_{\alpha}} \phi_{\mu\nu} \phi_{\rho\sigma} \right) + 2 \nabla_{\alpha} \nabla_{\beta} \left(\frac{\delta C^{\mu\nu\alpha\beta}}{\delta \phi_{\alpha\beta}} \phi_{\mu\nu} \right) = 0 \tag{8}$$

• El tensor $C^{\mu\nu\rho\sigma}$ debe cumplir las siguientes simetrías

$$C^{\mu\nu\rho\sigma} = C^{\mu\nu\sigma\rho} = C^{\nu\mu\rho\sigma} = C^{\rho\sigma\mu\nu}.$$
(9)

Por lo tanto, se escribe como

$$C^{\nu\mu\sigma\rho} = \frac{1}{2}\alpha_{1} (g^{\mu\sigma}g^{\rho\nu} + g^{\mu\rho}g^{\nu\sigma}) + \alpha_{2}g^{\mu\nu}g^{\rho\sigma} + \frac{1}{4}\alpha_{3} (g^{\mu\sigma}\phi^{\rho}\phi^{\nu} + g^{\rho\nu}\phi^{\mu}\phi^{\sigma} + g^{\mu\rho}\phi^{\nu}\phi^{\sigma} + g^{\nu\sigma}\phi^{\mu}\phi^{\rho}) + \alpha_{5}\phi^{\mu}\phi^{\nu}\phi^{\rho}\phi^{\sigma}.$$
(10)

Casos particulares

Término cuartico de Horndeski

$$f = G_4$$
, $\alpha_1 = -\alpha_2 = 2G_{4,X}$
 $\alpha_3 = \alpha_4 = \alpha_5 = 0$.

$$L_4^{\rm H} = G_4(\phi, X)^{(4)}R$$
$$-2G_{4,X}(\phi, X)(\Box \phi^2 - \phi^{\mu\nu}\phi_{\mu\nu}) \quad (11)$$

Término más allá de Horndeski

$$\alpha_1 = -\alpha_2 = XF_4$$
, $\alpha_3 = -\alpha_4 = 2F_4$
 $\alpha_5 = 0$.

$$L_4^{\text{bH}} = F_4(\phi, X) \epsilon^{\mu\nu\rho}{}_{\sigma} \epsilon^{\mu'\nu'\rho'\sigma} \phi_{\mu} \phi_{\mu'} \phi_{\nu\nu'} \phi_{\rho\rho'}$$
(12)

Un acción equivalente es

$$S[g, \phi; A_{\mu}, \lambda^{\mu}] = \int \sqrt{|g|} \left(f^{(4)}R + C^{\mu\nu\rho\sigma} \nabla_{\mu} A_{\nu} \nabla_{\rho} A_{\sigma} + \lambda^{\mu} (\nabla_{\mu} \phi - A_{\mu}) \right)$$
(13)

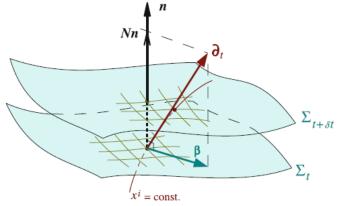
• Las ecuaciones de movimiento son para el campo escalar ϕ y el campo vectorial A_μ

$$\frac{\delta C^{\mu\nu\rho\sigma}}{\delta\phi} \nabla_{\mu} A_{\nu} \nabla_{\rho} A_{\sigma} - \nabla_{\mu} \lambda^{\mu} = 0 \qquad A_{\mu} = \nabla_{\mu} \phi$$

$$\frac{\delta C^{\mu\nu\rho\sigma}}{\delta A_{\alpha}} \nabla_{\mu} A_{\nu} \nabla_{\rho} A_{\sigma} - 2 \nabla_{\beta} \left(C^{\mu\nu\rho\sigma} \nabla_{\mu} A_{\nu} \right) = \lambda^{\alpha}$$
(14)

Degeneración

- Para utilizar las condiciones de degeneración es necesario, primero, encontrar la matriz cinética o Hessiana.
 - Por lo tanto, se debe separar las derivadas espaciales de las temporales, para tal fin se utiliza el formalismo 3+1.



Fíg. 2. Descomposición 3+1 [7]

[7] E. Gourgoulhon, 3+1 Formalism in General Relativity, volume 846, 01 2012.

Universidad Industrial de Santander

• Descomposición 3+1 de la derivada covariante

$$\nabla_{a}A_{b} = D_{\underline{a}}\hat{A}_{b} - A_{*}K_{ab} + n_{\underline{a}}(K_{bc}\hat{A}^{c} - D_{b}A_{*}) + n_{\underline{b}}(K_{ac}\hat{A}^{c} - D_{\underline{a}}A_{*}) + \frac{1}{N}n_{\underline{a}}n_{\underline{b}}(\dot{A}_{*} - \beta^{c}D_{c}A_{*} - N\hat{A}^{c}a_{\underline{c}})$$
(15)

ullet K_{ab} es el tensor de curvatura extrínseco, se puede expresar como

$$K_{ab} = \frac{1}{2N} (\dot{h}_{ab} - D_a \beta_n - D_b \beta_a)$$

- a_c es el vector aceleración
- La parte cinética

$$(\nabla_a A_b)_{kin} = \lambda_{ab} \dot{A}_* + \Lambda_{ab}^{cd} K_{cd}, \qquad (17)$$

• Con

$$\lambda_{ab} \equiv \frac{1}{N} n_a n_b , \qquad \Lambda_{ab}^{cd} = -A_* h_{(a}^c h_{b)}^d + 2 n_{(a} h_{b)}^{(c} \hat{A}^{d)} .$$

(18)

13

(16)

Universidad Industrial de Santander

El Lagrangiano cinético es

$$L_{kin}^{(\phi)} = C^{abcd} \lambda_{ab} \lambda_{cd} \dot{A}_{*}^{2} + 2C^{abcd} \Lambda_{ab}^{ef} \lambda_{cd} \dot{A}_{*} K_{ef} + C^{abcd} \Lambda_{ab}^{ef} \Lambda_{cd}^{gh} K_{ef} K_{gh}$$

$$\mathcal{A} \qquad \mathcal{B}^{ef} \qquad \mathcal{K}^{efgh}$$

$$(19)$$

• Se encuentran los coeficientes

•
$$\mathcal{A} = C^{abcd} \lambda_{ab} \lambda_{cd} = \frac{1}{N^2} [\alpha_1 + \alpha_2 + (\alpha_3 - \alpha_4) \dot{A_*}^2 + \alpha_5 \dot{A_*}^4]$$
 (20)

•
$$\mathcal{B}^{ef} = C^{abcd} \Lambda^{ef}_{ab} \lambda_{cd} = \beta_1 h^{ef} + \beta_2 \hat{A}^e \hat{A}^f$$
 (21)

• Con

$$\beta_1 = \frac{A_*}{2N} (2\alpha_2 - \alpha_3 A_*^2), \qquad \beta_2 = -\frac{A_*}{2N} (\alpha_3 + 2\alpha_4 - 2\alpha_5 A_*^2)$$
 (22)

Somos **el mejor** escenario de creación e innovación.

•
$$\mathcal{K}^{efgh} = C^{abcd} \Lambda_{ab}^{ef} \Lambda_{cd}^{gh} = \kappa_1 h^{a(c} h^{d)b} + \kappa_2 h^{ab} h^{cd} + \frac{1}{2} \kappa_3 \left(\hat{A}^a \hat{A}^b h^{cd} + \hat{A}^c \hat{A}^d h^{ab} \right) + \frac{1}{2} \kappa_4 \left(\hat{A}^a \hat{A}^{(c} h^{d)b} + \hat{A}^b \hat{A}^{(c} h^{d)a} \right) + \kappa_5 \hat{A}^a \hat{A}^b \hat{A}^c \hat{A}^d ,$$
 (23)

• Con

$$\kappa_1 = \alpha_1 A_*^2, \qquad \kappa_2 = \alpha_2 A_*^2, \qquad \kappa_3 = -\alpha_3 A_*^2, \qquad \kappa_4 = -2\alpha_1, \qquad \kappa_5 = \alpha_5 A_*^2 - \alpha_4.$$
(24)

• Términos cinéticos gravitacionales

$$\bullet \ \mathcal{B}_{grav}^{ab} = \frac{2f_X A_* h^{ab}}{N} \tag{25}$$

•
$$\mathcal{K}_{grav}^{abcd} = \gamma_1 h^{a(c} h^{d)b} + \gamma_2 h^{ab} h^{cd} + \frac{1}{2} \gamma_3 \left(\hat{A}^a \hat{A}^b h^{cd} + \hat{A}^c \hat{A}^d h^{ab} \right)$$
 (26)

tomando

$$\gamma_1 = -\gamma_2 = f \,, \qquad \gamma_3 = 4f_X \,.$$

La parte cinética total de la acción

•
$$\widetilde{\mathcal{B}}^{ab} = \mathcal{B}^{ab} + \mathcal{B}^{ab}_{grav}$$
 $\widetilde{\mathcal{A}} = \mathcal{A}$ $\widetilde{\mathcal{K}}^{abcd} = \mathcal{K}^{abcd} + \mathcal{K}^{abcd}_{grav}$

(28)

(27)

Universidad Industrial de Santander

- Condiciones de degeneración
 - Se debe considerar la matriz cinética completa

$$\mathcal{M} = \begin{pmatrix} \mathcal{A} & \widetilde{\mathcal{B}}^{cd} \\ \widetilde{\mathcal{B}}^{ab} & \widetilde{\mathcal{K}}^{abcd} \end{pmatrix}$$
 (29)

• Está matriz es degenerada si se cumple

$$v_o \mathcal{A} + \widetilde{\mathcal{B}}^{cd} \mathcal{V}_{cd} = 0 \qquad v_o \widetilde{\mathcal{B}}^{ab} + \widetilde{\mathcal{K}}^{abcd} \mathcal{V}_{cd} = 0$$
 (30)

• Con

$$\mathcal{V}_{cd} = v_1 h_{cd} + v_2 \hat{A}_c \hat{A}_d \tag{31}$$

- Condiciones de degeneración
 - Reescribiendo

$$\mathcal{M} \cdot \mathcal{V} \equiv \begin{pmatrix} \mathcal{A} & 3\tilde{\beta}_{1} + \tilde{\beta}_{2}\hat{A}^{2} & \tilde{\beta}_{1}\hat{A}^{2} + \tilde{\beta}_{2}(\hat{A}^{2})^{2} \\ \tilde{\beta}_{1} & \tilde{\kappa}_{1} + 3\tilde{\kappa}_{2} + \tilde{\kappa}_{3}\hat{A}^{2}/2 & \tilde{\kappa}_{2}\hat{A}^{2} + \tilde{\kappa}_{3}(\hat{A}^{2})^{2}/2 \\ \tilde{\beta}_{2} & 3\tilde{\kappa}_{3}/2 + \kappa_{4} + \kappa_{5}\hat{A}^{2} & \tilde{\kappa}_{1} + (\tilde{\kappa}_{3}/2 + \kappa_{4})\hat{A}^{2} + \kappa_{5}(\hat{A}^{2})^{2} \end{pmatrix} \begin{pmatrix} v_{0} \\ v_{1} \\ v_{2} \end{pmatrix} = 0.$$
 (32)

Se toma

$$\hat{A}^2 = X + A_*^2.$$

- Condiciones de degeneración
 - Si se exige que el determinante de la matriz cinética sea cero, se obtiene

$$D_0(X) + D_1(X)A_*^2 + D_2(X)A_*^4 = 0 (33)$$

Donde

$$D_0(X) \equiv -4(\alpha_2 + \alpha_1) \left[X f(2\alpha_1 + X\alpha_4 + 4f_X) - 2f^2 - 8X^2 f_X^2 \right] ,$$

$$D_1(X) \equiv 4 \left[X^2 \alpha_1(\alpha_1 + 3\alpha_2) - 2f^2 - 4X f \alpha_2 \right] \alpha_4 + 4X^2 f(\alpha_1 + \alpha_2) \alpha_5 + 8X \alpha_1^3$$
(34)

$$-4(f + 4Xf_X - 6X\alpha_2)\alpha_1^2 - 16(f + 5Xf_X)\alpha_1\alpha_2 + 4X(3f - 4Xf_X)\alpha_1\alpha_3$$

$$-X^2f\alpha_3^2 + 32f_X(f + 2Xf_X)\alpha_2 - 16ff_X\alpha_1 - 8f(f - Xf_X)\alpha_3 + 48ff_X^2,$$
(35)

$$D_{2}(X) \equiv 4 \left[2f^{2} + 4Xf\alpha_{2} - X^{2}\alpha_{1}(\alpha_{1} + 3\alpha_{2}) \right] \alpha_{5} + 4\alpha_{1}^{3} + 4(2\alpha_{2} - X\alpha_{3} - 4f_{X})\alpha_{1}^{2} + 3X^{2}\alpha_{1}\alpha_{3}^{2}$$

$$-4Xf\alpha_{3}^{2} + 8(f + Xf_{X})\alpha_{1}\alpha_{3} - 32f_{X}\alpha_{1}\alpha_{2} + 16f_{X}^{2}\alpha_{1} + 32f_{X}^{2}\alpha_{2} - 16ff_{X}\alpha_{3}$$
(36)

- Clasificación de las teorías degeneradas
 - Primera clase $\alpha_1 + \alpha_2 = 0$
 - La condición $D_0(X) = 0$ es cumplida
 - La condición $D_1(X) = 0$, genera

$$\alpha_4 = \frac{1}{8(f+X\alpha_2)^2} \left[16X\alpha_2^3 + 4(3f+16Xf_X)\alpha_2^2 + (16X^2f_X - 12Xf)\alpha_3\alpha_2 - X^2f\alpha_3^2 + 16f_X(3f+4Xf_X)\alpha_2 + 8f(Xf_X - f)\alpha_3 + 48ff_X^2 \right].$$
(37)

• La condición $D_2(X) = 0$, genera

$$\alpha_5 = \frac{(4f_X + 2\alpha_2 + X\alpha_3)\left(-2\alpha_2^2 + 3X\alpha_2\alpha_3 - 4f_X\alpha_2 + 4f\alpha_3\right)}{8(f + X\alpha_2)^2}.$$

(38)

- Clasificación de las teorías degeneradas
 - Segunda clase $\alpha_1 + \alpha_2 \neq 0$
 - La condición $D_0(X) = 0$ es cumplida si

$$2X\alpha_1 + X^2\alpha_4 = 2. (39)$$

• Resolviendo $D_1(X)=0$ y $D_2(X)=0$ para expresar α_4 y α_5 en términos de otras tres funciones, se genera

$$(X\alpha_1 - 1)^2 (4 + 8X\alpha_2 + 2X\alpha_1 + X^2\alpha_3)^2 = 0.$$
(40)

- Se generan 2 subclases
 - Primera subclase

$$\alpha_1 = \frac{1}{X}, \qquad \alpha_4 = 0, \qquad \alpha_5 = \frac{-4 - 8X\alpha_2 - 4X^2\alpha_3 + X^4\alpha_3^2}{4X^3(1 + X\alpha_2)}$$
 (41)

• Segunda subclase

$$\alpha_1 = -\frac{2}{X} - 4\alpha_2 - \frac{X}{2}\alpha_3$$
, $\alpha_4 = \frac{6}{X^2} + \frac{8}{X}\alpha_2 + \alpha_3$, $\alpha_5 = -\frac{4 + 8X\alpha_2 + 3X^2\alpha_3}{X^3}$

Universidad Industrial de Santander

#LaUISqueQueremos

iGracias!