ETAPA INICIAL

INVERSIÓN ROBUSTA DE DATOS MAGNETOTELÚRICOS: CASO DE ESTUDIO ENTRE PROVINCIAS TECTÓNICAS SOBRE LA FALLA DE BUCARAMANGA

Omar Felipe Latorre Ramírez*

Director: Saul Ernesto Guevara Ochoa** Co-director: Luis Carlos Mantilla Figueroa** Co-director: Yesid Paul Goyes Peñafiel*

Universidad Industrial de Santander

*Escuela de Física, Facultad de Ciencias **Escuela de Geología, Facultad Físico-Químicas Septiembre, 2020

#LaUISqueQueremos

Universidad Industrial de Santander

- 1. INTRODUCCIÓN
- 2. JUSTIFICACIÓN
- 3. MAGNETOTELÚRICA
- 4. INVERSIÓN ROBUSTA
- 5. RECONOCIMIENTO DE CAMPO

REFERENCIAS

1. INTRODUCCIÓN

Figura 1. Mapa de ubicación del Área del Proyecto. Elementos geológicos tomados de Ward et al. (1977).

www.uis.edu.co

Universidad Industrial de Santander

3. MAGNETOTELÚRICA (MT)

Figura 2. Representación esquemática del espectro electromagnético conocido. (modificado de Martí i Castells, 2006).

Somos **el mejor** escenario de creación e innovación.

5

3. INVERSIÓN ROBUSTA Asimpeg

¿Cómo determinar la máxima profundidad en los modelos de inversión?

Skin Depth

Distancia en la cual la amplitud de la propagación de una onda a través de un medio homogéneo decaerá en un factor de 1/e

$$\delta = \frac{500}{\sqrt{\sigma f}}$$

- Vest Christiansen & Auken (2012) Sensibilidad acumulada.
- Transformada de Niblett-Bostick datos observados.
- ➢ Borah & Patro (2019) − Angulo de fase (datos) observados).

Universidad Industrial de

Santander

5. Reconocimiento de campo

Figura 4 . Mapa PREMILINAR de adquisición geofísica. Elementos geológicos tomados de Ward, et al. 1977

Universidad Industrial de

www.uis.edu.co

de creación e innovación.

REFERENCIAS

[1] Becken, M. Ritter, O. (2012) Magnetotelluric studies at the San Andreas Fault Zone: implications for the role of fluids. *Surv Geophys* 33:65–105. DOI: <u>https://doi.org/10.1007/s10712-011-9144-0</u>

[2] Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. In Computers and Geosciences (Vol. 85, pp. 142–154). Elsevier Ltd. https://doi.org/10.1016/j.cageo.2015.09.015

[3] Kang, S., Heagy, L. J., Cockett, R., & Oldenburg, D. W. (2017). Exploring nonlinear inversions: A 1D magnetotelluric example. *The Leading Edge*, *36*(8), 696–699. <u>https://doi.org/10.1190/tle36080696.1</u>

[4] Lindsey, J. Heagy, Rowan Cockett, Seogi Kang, Gudni K. Rosenkjaer, Douglas W. Oldenburg, (2017). "A framework for simulation and inversion in electromagnetics" Computers & Geosciences. DOI: <u>https://doi.org/10.1016/j.cageo.2017.06.018</u>

[5] Martí i Castells, A. (2006). Magnetotelluric Investigation of Geoelectrical Dimensionality and Study of the Central Betic Crustal Structure, A. Tesis Ph.D.. Cap. 1.

[6] Ward, D., Goldsmith, R., Jimeno, A., Cruz, J., Restrepo, H. & Gómez E. (1977). Geología de la Plancha 109 Rionegro. INGEOMINAS con la
colaboración del: U.S. GEOLOGICAL SURVEY (Convenio 514-L-030 de la A.I.D.).
http://recordcenter.sgc.gov.co/B4/13010010024237/mapa/pdf/0101242371300001.pdf

Universidad

Industrial de

Santander

#LaUISqueQueremos

iGracias!