

Observatory Lukas Nellen **ICN-UNAM** luka<u>s@nucleares.unam.mx</u>

The Pierre Auger Studying the Highest Energy Cosmic rays

Americas Research and Education Networks: Bringing the Universe to You! 2021-06-10

Cosmic rays are mostly	8
 Charged particles Electrons/positrons 	4
Protons, nuclei	0
Additionally (at the	-4
 Additionality (at the highest energies) Neutrinos 	-8
	-12
Ο ΥΠΟΣΟΠΣ	-16

Radiation in the Universe Electromagnetic and particles –

2

The spectrum of cosmic rays – looking for the highest energies

- spans 12 orders of magnitude
 Non-thermal, power-law
- Galactic origin up to 10¹⁶ eV
- Oltra High Energy Cosmic Rays: Energy above 10¹⁸ eV o 10¹⁹ eV
 - Extra-galactic origin
 - Very low flux

The Pierre Auger Collaboration

17 countries , ≈460 collaborators

Argentina – Australia – Bolivia – Brazil – Colombia – Czech Republic – France – Germany – Italy – Mexico – Netherlands – Poland – Portugal – Romania – Slovenia – Spain – United Kingdom – United States

The Auger Site

1660 surface detector
stations, I.5 km spacing
Infill: 750m spacing
+ buried μ detectors

- **4** Fluorescence detector sites
- *6 telescopes each
 *+3 elevated
- *****27 telescopes in total
- ***** Full coverage of the surface array
- Capability to detect stereo events
- *Quadruple events seen

Low Energy Extensions Radio Detectors

The Auger Site

Salinas<u>:</u>

AGUA DE CANZ

1786

El Salitral-Pto.

El Salitral-Pto.

Virgen del Carmen

Co do las Cohras

10

10 OLOR

A 212

mante 60

[km]

1660 surface detector stations, 1.5 km spacing

Infill: 750pp

+ b

nce detector sites

celescopes each

- *****+3 elevated
- *****27 telescopes in total
- ***** Full coverage of the

surface array

- ***** Capability to detect stereo events
- ***** Quadruple events seen

Low Energy Extensions Radio Detectors

A surface detector station

A surface detector station

3 Photomultipliers

Batteries

Air shower detection

000000 8008800000

1,5 km

- 8000 88 0000 - 80000 - 80000 - 80000 - 80000 - 80000 - 80000 - 80000 - 80000 - 80000 - 80000 - 80000 - 80000 Surface: lateral distribution

Fluorescence: longitudinal development (clear nights)

Velocity and time \Rightarrow distance

d = ct

Perpendicular plane \Rightarrow direction

Time ⇒ Direction

Surface detector Energy Determination

Surface detector Energy Determination

Inbrate the **SD** energy estimator from the FD calorimetric energy

Surface detector Energy Determination

Inbrate the SD energy estimator from the FD calorimetric energy

Combined spectrum

• Combine results from different techniques and detectors

$$J(E) = J_0 \left(\frac{E}{10^{18.5} \text{ eV}}\right)^{-\gamma_1} \times \prod_{i=1}^3 \left[1 + \left(\frac{E}{E_{ij}}\right)^{\frac{1}{\omega_{ij}}}\right]^{(\gamma_i - \gamma_j)\omega_{ij}}$$

 eV^{1} SI [km⁻² yr E^{2} $\stackrel{\times}{(I)}$ 10¹⁷ $^{1} eV^{2}$ ST⁻ E^3 [km⁻² yr⁻ $J(E) \times$

Combined spectrum

Combine results from different techniques and detectors

$$J(E) = J_0 \left(\frac{E}{10^{18.5} \text{ eV}}\right)^{-\gamma_1} \times \\ \prod_{i=1}^3 \left[1 + \left(\frac{E}{E_{ij}}\right)^{\frac{1}{\omega_{ij}}}\right]^{(\gamma_i - \gamma_j)\omega_{ij}}$$

Spectral parameters: $E_{12} = 5 \pm 0.1 \pm 0.8 \text{ EeV}$ $E_{23} = 13 \pm 1 \pm 2 \text{ EeV}$ $E_{34} = 46 \pm 3 \pm 6 \text{ EeV}$

 eV^{1} S [km⁻² yr E^2 $J(E) \times$ $^{1} eV^{2}$ ST E^3 [km⁻² yr⁻ $J(E) \times$

Anisotropy: Rayleigh analysis in right ascension

- Harmonic analysis in Right Ascension α $a_{\alpha} = \frac{2}{N} \sum_{i=1}^{N} w_i \cos \alpha_i,$
- Weights account for small no
- Obtain: amplitude and phase of 1st harmonic
- For events above 8 EeV
 - Amplitude $4.7^{+0.8}_{-0.7}$ %
 - Chance probability 2.6×10^{-8}
 - After penalization: 5.2σ

,
$$b_{\alpha} = \frac{2}{N} \sum_{i=1}^{N} w_i \sin \alpha_i$$

on-uniformities

 $r_{\alpha} = \sqrt{a_{\alpha}^2 + b_{\alpha}^2}, \quad \tan \phi_{\alpha} = \frac{b_{\alpha}}{a_{\alpha}}$

Event rate vs Right Ascension

CR dipole vs 2MRS dipole

• Cross indicates CR dipole, Diamond 2MRS dipole • Expected deflection shown for specific model for magnetic fields

 $\sigma(e-Air) > \sigma(p-Air)$

Shower development accessible through the FD

6

 $X_{max} [g/cm^2]$ 5 in air shower

Composition

Indication of a change from light to heavy as energy increases
Interpretation requires models
Observation not compatible with all models

GW170817 / GRB170817A: NS-NS merger NS-NS merger seen in Gravitational Waves THAW COSEIVEI **Hare** TETTINITULIAN

Neutrino Followup: IceCube, Antares, Pierre Auger Observatory

• At time of GW trigger: Event in region of maximum sensitivity for Auger

• Time windows: 500 sec, 14 days

- Only optimistic model constraint by observations
- Consistent with • GRB observed off-axis • Low luminosity GRB

GW170817 Neutrino Limits

Auger Upgrade

- Lack of knowledge of composition limits the interpretation of results
- Separate determination of muonic and electro-magnetic signal is important
- Goal:
 - Determine origin of flux suppression: GZK or maximum energy of sources
 - Search for proton component at the highest energies (> astronomy)
 - Study air showers and particle production at $E_{cms} > 70 TeV$

Upgraded Station

Scintillator counter on top of tank

New, faster electronics

Output: A series of the ser

Funded
Prototype in the field

Conclusions

Auger operating since 2004, complete since 2008 Robust, stable detector. Results:

- - Spectrum: ankle, suppression
 - Anisotropy: Evidence for dipole
 - Competitive neutrino limits

 - Output Service And A service A se • Exotics: Monopoles, Lorentz violation • Muon counting, asymmetries: discrepancy with interaction models ILGO/VIRGO GW neutrino followup (MoU) Measured p-Air cross-section at 57 TeV
 - Non-cosmic ray science
- Upgrade in progress
 - Extend science reach

Related experiments and spinoff

• HAWC Observatory in México: Gamma Ray Astronomy Output Planning southern hemisphere counterpart SWGO

• LHC experiments: ALICE

Oriving HPC infrastructure • Data intense science: current storage 7PB Network demands

