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Encuentros en el camino a la clasificación de los 
estados de la materia: complejidad, universalidad, 

álgebra y topología...



Plano de la presentación:

• Clasificación de las fases (los estados) de la materia 
y transiciones de fase
• Invariancia de escala en las transiciones de fase
• Invariancia de escala en 2-D, lo que nos dice el 

álgebra 
• Nuevo paradigma: lo que nos dice la topología
• Texturas topológicas
• Estados topológicos de la materia
• Conclusión y comentarios finales
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• Fenómeno colectivo
• Se distinguen las fases por la simetrías (aquí de traslación)



El ejemplo del magnetismo



El ejemplo del magnetismo

El límite termodinámico



El ejemplo del magnetismo

Los grupos de simetría y la(s) ruptura(s) de simetría
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El grupo de renormalización y universalidad (Wilson ~ 1970)
ed and the entire procedure can be re
peated yet again. 

The point of this repetitive operation 
is that it  provides information about the 
behavior of distinct but related spin sys
tems in which the fundamental scale of 
length gets larger with each iteration. 
After the first block-spin transformation 

the fluctuations at the smallest scale 
have been eliminated, but those slightly 
larger, with a scale of roughly three 
times the original lattice spacing, can 
be seen more clearly. After the second 
transformation each block spin repre
sents the 8 1  spins in a nine-by-nine block 
of the original lattice, and all fluctua-
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tions up to this size range are averaged 
out, leaving only those larger than nine 
lattice units. The next iteration removes 
all  fluctuations whose scale is between 
nine and 27 lattice units, then the fol
lowing iteration removes those between 
27 and 8 1  units. Eventually fluctuations 
at all scales up to the correlation length 

F I RST-STAGE 

--

S ECOND -S TA G E  BLOCK S P I N S  

BLOCK-SPIN TRANSFORMATION is applied t o  a lattice o f  spins 
repeatedly, each time elucidating the behavior of the system at a larg
er scale. The computer simulation, which was carried out by the au
thor, began with an array of some 236,000 spins; a black square rep
resents an up spin and an open square a down spin. The initial tem
p�rature was set equal to three values: above the Curie temperature, 
Te. at Te and just below Te. The transformation begins with the di-

vision of the original lattice into three-by-three blocks. Each block 
is replaced by a single spin whose value is determined by majority 
rule; these make up the lattice of first-stage block spins. The proce
dure is then repeated, but with the first-stage block spins serving as 
the starting lattice. The resulting second-stage spins form the initial 
configuration for the next transformation, and so on. By the time the 
third stage is reached the number of spins is small enough for them all 
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LATIICE 

are averaged out. The resulting spin sys
tem reflects only the long-range proper
ties of the original Ising system, with all 
finer-scale fluctuations eliminated. 

The value of the block-spin technique 
can be perceived even through a simple 
visual inspection of the evolving model. 
Merely looking at a configuration of 
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Ising spins just below the Curie temper
ature will seldom reveal that the model 
is slightly magnetized. At this tempera
ture there is only a small excess of one 
spin direction over the other, and the 
many small-scale fluctuations obscure 
the overall bias_ After several applica
tions of the block-spin transformation, 

however, the smaller fluctuations disap
pear and the long-range magnetization 
becomes obvious. 

M uch of the physical meaning of the 
block-spin transformation is to be found 
in the way the couplings between spins 
change. The rules for deriving the new 
couplings from the old ones at each 
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t o  be shown, a n d  after t h e  fourth stage there are only 3 6  spins left, 
each one representing more than 6,000 sites in the original lattice. In 
the first stage any fluctuations whose scale of length is smaller than 
three lattice units are eliminated by the averaging procedure. The sec
ond stage removes the fluctuations between three and nine lattice 
units, the third stage those between nine and 27 nnits, and so on. When 
the initial temperature is above Te, the spins become more nearly ran-

dom in appearance with each iteration and large-scale fluctuations 
disappear; when the temperature is below Te, the spins become more 
nearly uniform and what fluctuations remain are small in scale. When 
the starting temperature is exactly equal to Te. large-scale fluctua
tions remain at all stages. Because the block-spin transformation 
leaves the large-scale structure of the lattice unchanged at the Curie 
temperature, a system at that temperature is said to be at a fixed point. 
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En punto crítico (de transición): invariancia de escala

El grupo de renormalización y universalidad (Wilson ~ 1970)

14 

Scaling is an important feature of 
phase transitions 

In fluids,  
•  A single (universal) curve is found plotting    T/Tc  vs. ρ/ρc .  
•  A fit to curve reveals that ρc ~ |t|β   (β=0.33). 

–  with reduced temperature |t| =|(T-Tc)/Tc| 
–  For percolation phenomena, |t| à |p|=|(p-pc)/pc| 

•  Generally, 0.33 ≤ β ≤ 0.37, e.g., for liquid Helium β = 0.354. 
 
A similar feature is found for other quantities, e.g., in magnetism: 
•  Magnetization:  M(T) ~ |t|β     with 0.33 ≤ β ≤ 0.37. 
•  Magnetic Susceptibility: χ(T) ~ |t|-γ    with 1.3 ≤ γ ≤ 1.4.  
•  Correlation Length: ξ(T) ~ |t|-ν        where ν depends on dimension. 
•  Specific Heat (zero-field): C(T) ~ |t|- α  where α ~ 0.1  

β, γ, ν, and α are called critical exponents. 

Atomic Scale Simulation 
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Las funciones de correlación a 2 y tres puntos (Polyakov 1970)

h�a(~x)�b(~y)i =
�a,b

|~x� ~y|�a+�b

h�a(~x)�b(~y)�c(~z)i =
C

|~x� ~y|�a+�b��c |~x� ~z|�a+�c��b |~z � ~y|�c+�b��a
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En punto crítico (de transición): invariancia de escala

El grupo de renormalización y universalidad (Wilson ~ 1970)

Los puntos críticos correspondientes a una misma clase de 
universalidad representados por una única teoría de campos 
invariante de escala



Invariancia de escala en 2-D, lo que nos dice el álgebra 

h�a(~x)�b(~y)i =
�a,b

|~x� ~y|�a+�b

h�a(~x)�b(~y)�c(~z)i =
C

|~x� ~y|�a+�b��c |~x� ~z|�a+�c��b |~z � ~y|�c+�b��a

z = x+iy ; z ! f(z)

1

La invariancia de escala, rotación y traslación en una teoría de campos 
local        invariancia bajo todas las transformaciones conformes
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Una infinidad de simetrías
Se estudia el álgebra de los generadores de esas simetrías  
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Virasoro algebra
In mathematics, the Virasoro algebra (named after the physicist Miguel Ángel Virasoro)[1] is
a complex Lie algebra and the unique central extension of the Witt algebra. It is widely used in
two-dimensional conformal field theory and in string theory.

Definition
Representation theory

Highest weight representations
Singular vectors
Hermitian form and unitarity
Characters

Applications
Conformal field theory
String theory

Generalizations
Super Virasoro algebras
W-algebras
Affine Lie algebras
Meromorphic vector fields on Riemann surfaces
Vertex algebras and conformal algebras

History
See also
Notes
References

The Virasoro algebra is spanned by generators Ln for n ∈ ℤ and the central charge c.
These generators satisfy  and

Contents

Definition

Algebra de Virasoro
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Se estudia las representaciones del álgebra 
(Belavin, Polkyakov, Zamolodchikov 1984) 



Invariancia de escala en 2-D, lo que nos dice el álgebra 

Modelo de Ising, Ising tri-crítico, Potts a 3 estados, etc…

Para varios de esos modelos no se conoce el lagrangiano de la
teoría de campos correspondiente, pero se pueden calcular exactamente
las funciones de correlación ! 
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Euler Characteristic :

For a closed manifold :
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⇧1(S
1) = Z

n =
1

2⇡

Z 1

0
dt

✓
d✓

dt

◆
t 2 [0, 1] ; ~r(t) = (cos ✓(t), sin ✓(t)) ; ~r(0) = ~r(1)

Homotopy groups :
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⇧2(S
2) = Z

n =
1

4⇡

Z
dxdy ~M.

⇣
@x ~M ⇥ @y ~M

⌘

Berry phase due to non-coplanar spin

gauge flux F

Si

Sj

Sk

|ci䋾 |cj䋾

acquire a phase factor = Berry phase

scalar spin chiralityscalar spin chirality
Fictitious flux (in a continuum limit)

Conduction electron

Localized spin
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Ordering, metastability and phase transitions in 
two-dimensional systems 

J M Kosterlit7 and D J Thouless 
Department of Mathematical Physics, University of Birmingham, Birmingham B15 2TT, UK 

Received 13 November 1972 

Abstract. A new definition of order called topological order is proposed for two-dimensional 
systems in which no long-range order of the conventional type exists. The possibility of a 
phase transition characterized by a change in the response of the system to an external 
perturbation is discussed in the context of a mean field type of approximation. The critical 
behaviour found in this model displays very weak singularities. The application of these 
ideas to the x y  model of magnetism, the solid-liquid transition, and the neutral superfluid 
are discussed. This type of phase transition cannot occur in a superconductor nor in a 
Heisenberg ferromagnet. for reasons that are given. 

1 .  Introduction 

Peierls (1935) has argued that thermal motion of long-wavelength phonons will destroy 
the long-range order of a two-dimensional solid in the sense that the mean square 
deviation of an atom from its equilibrium position increases logarithmically with the 
size of the system, and the Bragg peaks of the diffraction pattern formed by the system 
are broad instead of sharp. The absence of long-range order of this simple form has been 
shown by Mermin (1968) using rigorous inequalities. Similar arguments can be used to 
show that there is no spontaneous magnetization in a two-dimensional magnet with 
spins with more than one degree of freedom (Mermin and Wagner 1966) and that the 
expectation value of the superfluid order parameter in a two-dimensional Bose fluid 
is zero (Hohenberg 1967). 

On the other hand there is inconclusive evidence from the numerical work on a 
two-dimensional system of hard discs by Alder and Wainwright (1962) of a phase 
transition between a gaseous and solid state. Stanley and Kaplan (1966) found that high- 
temperature series expansions for two-dimensional spin models indicated a phase 
transition in which the susceptibility becomes infinite.The evidence for such a transition 
is much stronger for the xy model (spins confined to a plane) than for the Heisenberg 
model, as can be seen from the papers of Stanley (1968) and Moore (1969). Low-tem- 
perature expansions obtained by Wegner (1967) and Berezinskii (1970) give a magnetiza- 
tion proportional to some power of the field between zero and unity, and indicate the 
possibility of a sharp transition between such behaviour and the high-temperature 
regime where the magnetization is proportional to the applied field. 

In this paper we present arguments in favour of a quite different definition of long- 
range order which is based on the overall properties of the system rather than on the 
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LETTER TO THE EDITOR 

Long range order and metastability in two dimensional solids 
and superfluids 

J M KOSTERLITZ and D J THOULESS 
Department of Mathematical Physics, University of Birmingham, Birmingham B15 2TT 

MS received 11 April 1972 

Abstract. Dislocation theory is used to define long range order for two dimensional 
solids. An ordered state exists at low temperatures, and the rigidity modulus is nonzero 
at the transition temperature. Similar arguments show that the superfluid density is 
nonzero at the transition temperature of a two dimensional superfluid. 

Peierls (1934, 1935) has argued that no long range order exists in two dimensional solids 
because thermal motion of low energy phonons results in a mean square deviation of 
atoms from their equilibrium positions which increases logarithmically with the size of 
the system. The absence of long range order of this simple form has been shown rigorously 
by Mermin (1968). Similar arguments can be used to show that there is no spontaneous 
magnetization in a two dimensional Heisenberg magnet (Mermin and Wagner 1966) and 
that the expectation value of the superfluid order parameter in a two dimensional Bose 
liquid is zero (Hohenberg 1967). 

Numerical work on a two dimensional system of hard discs by Alder and Wainwright 
(1962) indicated a phase transition between a gaseous and a solid state. Stanley and 
Kaplan (1966) found that high temperature series expansions for two dimensional spin 
models indicated a phase transition at which the magnetic susceptibility becomes infinite. 
The evidence for such a transition is much stronger for the xy model (spins confined to a 
plane) than for the Heisenberg model, as can be seen in the papers of Stanley (1968) and 
Moore (1969). Low temperature expansions obtained by Wegner (1967) and Berezinskii 
(1970) give a magnetization proportional to some power of the field between zero and 
unity, and there may be a sharp transition between such behaviour, with infinite magnetic 
susceptibility, and the high temperature regime. 

In this paper we argue in favour of a different definition of long range order based on 
the overall properties of the system rather than on the behaviour of a two-point correla- 
tion function. This type of long range order, which we refer to as topological long range 
order, may exist for the two dimensional solid, neutral superfluid, and for the xy model, 
but not for a superconductor nor for the isotropic Heisenberg model. In the case of a 
solid the disappearance of topological long range order is associated with a transition 
from a rigid to a fluid response to a small external stress, while for a neutral superfluid it 
is associated with the instability of persistent currents. We have recently learnt that 
Berezinskii (1 971) has put forward similar arguments, but there are some important 
differences in our results. 

The definition of topological long range order which we adopt arises naturally in the 
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plane) than for the Heisenberg model, as can be seen in the papers of Stanley (1968) and 
Moore (1969). Low temperature expansions obtained by Wegner (1967) and Berezinskii 
(1970) give a magnetization proportional to some power of the field between zero and 
unity, and there may be a sharp transition between such behaviour, with infinite magnetic 
susceptibility, and the high temperature regime. 

In this paper we argue in favour of a different definition of long range order based on 
the overall properties of the system rather than on the behaviour of a two-point correla- 
tion function. This type of long range order, which we refer to as topological long range 
order, may exist for the two dimensional solid, neutral superfluid, and for the xy model, 
but not for a superconductor nor for the isotropic Heisenberg model. In the case of a 
solid the disappearance of topological long range order is associated with a transition 
from a rigid to a fluid response to a small external stress, while for a neutral superfluid it 
is associated with the instability of persistent currents. We have recently learnt that 
Berezinskii (1 971) has put forward similar arguments, but there are some important 
differences in our results. 

The definition of topological long range order which we adopt arises naturally in the 
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Figure 1. An isolated \ortex in the xy model 

From the arguments of the Introduction, this suggests that a suitable description of the 
system is to approximate the hamiltonian by terms quadratic in A+(r)  and split this up 
into a term corresponding to the vortices and another to the low-energy excitations 
(spin waves). 
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Thus, at large separations, the spins will have gone through several revolutions relative 
to one another. If we now consider a vortex configuration of the type of figure 1, as we 
go round some closed path containing the centre of the vortex, +(Y) will change by 271 
for each revolution. Thus, for a configuration with no vortices, the function +(r)  will 
be single-valued, while for one with vortices it will be many-valued. This may be sum- 
marized by 

E A + ( 4  = 2 w  q = 0, * 1, * 2 . . .  (45) 

where the sum is over some closed contour on the lattice and the number q defines the 
total strength of the vortex distribution contained in the contour. If a single vortex of the 
type shown in figure 1 is contained in the contour, then q = 1. 

Let now +(Y) = $(Y) + $(Y), where $(r) defines the angular distribution of the spins 
in the configuration of the local minimum, and $(Y) the deviation from this. The energy 
of the system is now 
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The cross term vanishes because of the condition (47) obeyed by $(v). Clearly the con- 
figuration of absolute minimum energy corresponds to q = 0 for every possible contour 
when $(Y) is the same for all lattice sites. We see from equation (45) that, if we shrink the 
contour so that it passes through only four sites as in figure 2, we will obtain the strength 
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FIG. 3. (a) Competition between the chiral spin liquid and skyrmion solid at B = 0.9 as measured from

the specific heat Ch, magnetisation Mz, normalised number of skyrmion Nsk and orientational order parameter

 6 [Eq. (3)]. The chiral spin liquid disappears at Tg when skyrmions start to appear. The density of skyrmion

can be tuned by the temperature between Tg and Tl. (b) Definition of the angle ✓ij used in the definition of the

orientational order parameter in Eq. (3).

FIG. 4. Spin configurations and structure factor at B = 0.9.
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sical theory of the Hall current suggests, but ae-
eording to Laughlin each subband must carry an
integer multiple of the Hall current carried by
the entire Landau level. This result appears even
more paradoxical when it is realized that p, the
number of subbands, can become arbitrarily large
by an arbitrarily small change of the f1ux density.
This paper contains a calculation of the Hall con-
ductance for such a system, both in the limit of
a weak periodic potential and in the tight-binding-
limit of a strong periodic potential. We have de-
rived explicit expressions for the Hall currents
carried by the various subbands, and show how

the paradox is resolved.
We consider electrons in a potential U(x, y)

which is periodic inx, y with periods a, b, and in
a uniform magnetic induction & perpendicular to
the plane of the electrons. The band structure of
such a system depends critically on p =abeB/k,
which is the number of flux quanta per unit cell.
We take p to be a rational number p/q; the be-
havior for irrational values of p can be deduced
by taking an appropriate limit. We use the Landau
gauge in which the vector potential has compo-
nents (0, eBx). In this gauge the eigenfunctions of
the Schrodinger equation can be chosen to satisfy
the generalized Bloch condition

and are eigenfunctions of a Hamiltonian

1 . 8 2
H(k k ) = —ih—+8k, + —i@ +hk -eBx—+ U'Q y).

2ppg g~ ~
2yyz gy

The components of the velocity operator are then given by @ ' times the partial derivatives of H with
respect to 4„&2.
There are two quite different approaches to the problem of calculating the Hall conductance o H.

Laughlin' and Halperin' have studied the effects produced by changes in the vector potential on the
states at the edges of a finite system. By this technique the quantization of the conductance is made
explicit, but it is not obvious that the result is insensitive to boundary conditions. An alternative ap-
proach is to use the Kubo formula for a bulk two-dimensional conductor. In previous work using this
method' ' it has not been made obvious that an integer value for the conductance must be obtained.
Because of the relation between the velocity operator and the derivatives of H, the Kubo formula can

be written as
ie' ~ ~ (BH/ski) 8(BH/sk, )8 —(BH/Bk, )„q(BH/Bk, )~„+H 2

&~&EF &g B)F (~n —~S)
where A, is the area of the system and &,& ~ are
eigenvalues of the Hamiltonian. This can be re- only change
lated to the partial derivatives of the wave fune- when 0, is eh
tions u, and gives integrand re

by an x-independent phase factor 0
anged by 2~/aq or k, by 2~/b. The
duces to &8/Bk, . The integral is 2i

times the change in phase around the unit cell and
must be an integer multiple of 4~i.
The problem of evaluating this quantum number

remains. We have considered the potential

ie 2 2 Bg+ Ba Ba+ std

g,,»(x + qa, y)exp(- 2~ipy/b —ik,qa) =g,,„,(x,y + b)exp(- ik,b) =(&„,(x,y ), (I)
where k, (modulo 2&/aq) and k, (modulo 2ii/b) are good tluantum numbers. ' We ean now define functions
ii», =g» exp(-ik, x -ik, y) which satisfy the generalized periodic boundary conditions

a, , (x+qa, y)e """'=&0»(xiy + ) =&k,»&iy) i (2)

where the sum is over the occupied electron sub-
bands and the integrations are over the unit cells
in ~ and 4 space. The integral over the k-space
unit cell has been converted to an integral around
the unit ce11 by Stokes's theorem. For nonover-
lapping subbands g is a single-valued analytic
function everywhere in the unit cell, which ean

U(x,y) =U, cos( &2x/a)+U, e s(o2vy/b),

both in the limit of a weak periodic potential (I&l
«Ii~, ) and in the tight-binding limit of a strong
periodic potential. In the weak-potential limit
the wave function can be written as a superposi-
tion of the nearly degenerate Landau functions in
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Topological insulators represent a new quantum state of matter which is characterized by peculiar edge or surface
states that show up due to a topological character of the bulk wave functions. This review presents a pedagogical
account on topological insulator materials with an emphasis on basic theory and materials properties. After presenting
a historical perspective and basic theories of topological insulators, it discusses all the topological insulator materials
discovered as of May 2013, with some illustrative descriptions of the developments in materials discoveries in which
the author was involved. A summary is given for possible ways to confirm the topological nature in a candidate
material. Various synthesis techniques as well as the defect chemistry that are important for realizing bulk-insulating
samples are discussed. Characteristic properties of topological insulators are discussed with an emphasis on transport
properties. In particular, the Dirac fermion physics and the resulting peculiar quantum oscillation patterns are discussed
in detail. It is emphasized that proper analyses of quantum oscillations make it possible to unambiguously identify
surface Dirac fermions through transport measurements. The prospects of topological insulator materials for
elucidating novel quantum phenomena that await discovery conclude the review.

KEYWORDS: topological insulator, Dirac fermions, surface state, quantum oscillations

1. Introduction

The progress in condensed matter physics is often driven
by discoveries of novel materials. In this regard, materials
presenting unique quantum-mechanical properties are of
particular importance. Topological insulators (TIs) are a
class of such materials and they are currently creating a
surge of research activities.1–3) Because TIs concern a
qualitatively new aspect of quantum mechanics, i.e., the
topology of the Hilbert space, they opened a new window for
understanding the elaborate workings of nature.

TIs are called ‘‘topological’’ because the wave functions
describing their electronic states span a Hilbert space that
has a nontrivial topology. Remember, quantum-mechanical
wave functions are described by linear combinations of
orthonormal vectors forming a basis set, and the abstract
space spanned by this orthonormal basis is called Hilbert
space. In crystalline solids, where the wave vector k
becomes a good quantum number, the wave function can
be viewed as a mapping from the k-space to a manifold
in the Hilbert space (or in its projection), and hence the
topology becomes relevant to electronic states in solids.
Depending on the way the Hilbert-space topology becomes
nontrivial, there can be various different kinds of TIs.4) An
important consequence of a nontrivial topology associated
with the wave functions of an insulator is that a gapless
interface state necessarily shows up when the insulator is
physically terminated and faces an ordinary insulator
(including the vacuum). This is because the nontrivial
topology is a discrete characteristic of gapped energy states,
and as long as the energy gap remains open, the topology
cannot change; hence, in order for the topology to change
across the interface into a trivial one, the gap must close at
the interface. Therefore, three-dimensional (3D) TIs are
always associated with gapless surface states, and so are
two-dimensional (2D) TIs with gapless edge states. This
principle for the necessary occurrence of gapless interface
states is called bulk-boundary correspondence in topological
phases.

A large part of the unique quantum-mechanical properties
of TIs come from the peculiar characteristics of the edge/
surface states. Currently, the TI research is focused mostly
on time-reversal (TR) invariant systems, where the non-
trivial topology is protected by time-reversal symmetry
(TRS).1–3) In those systems, the edge/surface states present
Dirac dispersions (Fig. 1), and hence the physics of
relativistic Dirac fermions becomes relevant. Furthermore,
spin degeneracy is lifted in the Dirac fermions residing in the
edge/surface states of TR-invariant TIs and their spin is
locked to the momentum (Fig. 1). Such a spin state is said
to have ‘‘helical spin polarization’’ and it provides an
opportunity to realize Majorana fermions5) in the presence
of proximity-induced superconductivity,6) not to mention
its obvious implications for spintronics applications. An
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Fig. 1. (Color online) Edge and surface states of topological insulators
with Dirac dispersions. (a) Schematic real-space picture of the 1D helical
edge state of a 2D TI. (b) Energy dispersion of the spin non-degenerate edge
state of a 2D TI forming a 1D Dirac cone. (c) Schematic real-space picture
of the 2D helical surface state of a 3D TI. (d) Energy dispersion of the spin
non-degenerate surface state of a 3D TI forming a 2D Dirac cone; due to the
helical spin polarization, back scattering from k to "k is prohibited.
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Topological insulators represent a new quantum state of matter which is characterized by peculiar edge or surface
states that show up due to a topological character of the bulk wave functions. This review presents a pedagogical
account on topological insulator materials with an emphasis on basic theory and materials properties. After presenting
a historical perspective and basic theories of topological insulators, it discusses all the topological insulator materials
discovered as of May 2013, with some illustrative descriptions of the developments in materials discoveries in which
the author was involved. A summary is given for possible ways to confirm the topological nature in a candidate
material. Various synthesis techniques as well as the defect chemistry that are important for realizing bulk-insulating
samples are discussed. Characteristic properties of topological insulators are discussed with an emphasis on transport
properties. In particular, the Dirac fermion physics and the resulting peculiar quantum oscillation patterns are discussed
in detail. It is emphasized that proper analyses of quantum oscillations make it possible to unambiguously identify
surface Dirac fermions through transport measurements. The prospects of topological insulator materials for
elucidating novel quantum phenomena that await discovery conclude the review.
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1. Introduction

The progress in condensed matter physics is often driven
by discoveries of novel materials. In this regard, materials
presenting unique quantum-mechanical properties are of
particular importance. Topological insulators (TIs) are a
class of such materials and they are currently creating a
surge of research activities.1–3) Because TIs concern a
qualitatively new aspect of quantum mechanics, i.e., the
topology of the Hilbert space, they opened a new window for
understanding the elaborate workings of nature.

TIs are called ‘‘topological’’ because the wave functions
describing their electronic states span a Hilbert space that
has a nontrivial topology. Remember, quantum-mechanical
wave functions are described by linear combinations of
orthonormal vectors forming a basis set, and the abstract
space spanned by this orthonormal basis is called Hilbert
space. In crystalline solids, where the wave vector k
becomes a good quantum number, the wave function can
be viewed as a mapping from the k-space to a manifold
in the Hilbert space (or in its projection), and hence the
topology becomes relevant to electronic states in solids.
Depending on the way the Hilbert-space topology becomes
nontrivial, there can be various different kinds of TIs.4) An
important consequence of a nontrivial topology associated
with the wave functions of an insulator is that a gapless
interface state necessarily shows up when the insulator is
physically terminated and faces an ordinary insulator
(including the vacuum). This is because the nontrivial
topology is a discrete characteristic of gapped energy states,
and as long as the energy gap remains open, the topology
cannot change; hence, in order for the topology to change
across the interface into a trivial one, the gap must close at
the interface. Therefore, three-dimensional (3D) TIs are
always associated with gapless surface states, and so are
two-dimensional (2D) TIs with gapless edge states. This
principle for the necessary occurrence of gapless interface
states is called bulk-boundary correspondence in topological
phases.

A large part of the unique quantum-mechanical properties
of TIs come from the peculiar characteristics of the edge/
surface states. Currently, the TI research is focused mostly
on time-reversal (TR) invariant systems, where the non-
trivial topology is protected by time-reversal symmetry
(TRS).1–3) In those systems, the edge/surface states present
Dirac dispersions (Fig. 1), and hence the physics of
relativistic Dirac fermions becomes relevant. Furthermore,
spin degeneracy is lifted in the Dirac fermions residing in the
edge/surface states of TR-invariant TIs and their spin is
locked to the momentum (Fig. 1). Such a spin state is said
to have ‘‘helical spin polarization’’ and it provides an
opportunity to realize Majorana fermions5) in the presence
of proximity-induced superconductivity,6) not to mention
its obvious implications for spintronics applications. An
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Fig. 1. (Color online) Edge and surface states of topological insulators
with Dirac dispersions. (a) Schematic real-space picture of the 1D helical
edge state of a 2D TI. (b) Energy dispersion of the spin non-degenerate edge
state of a 2D TI forming a 1D Dirac cone. (c) Schematic real-space picture
of the 2D helical surface state of a 3D TI. (d) Energy dispersion of the spin
non-degenerate surface state of a 3D TI forming a 2D Dirac cone; due to the
helical spin polarization, back scattering from k to "k is prohibited.
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Estados topológicos de la materia
Aislantes topológicos

Con F. Gómez-Albarracín y D. Rosales



Estados topológicos de la materia
Aislantes topológicos

No existe ninguna cantidad local (o parámetro de orden local) que 
permita distinguir  entre un aislante “trivial” y un aislante topológico



comentarios finales

• ~1940-50: descripción de Ginzburg-Landau de los estados mas 
conocidos de la materia y de las transiciones   se estudian con 
parámetros de orden locales + construcción algebraica. 

• ~1980-?: descripción de los estados topológicos de la materia y de sus 
transiciones       se estudian con una construcción topológica. 

• …Y no se habló de los problemas de dinámica :
• Estados fuera de equilibrio, vidrios
• Sistemas dinámicos sin energía libre       la complejidad emerge 

exclusivamente de la dinámica 


