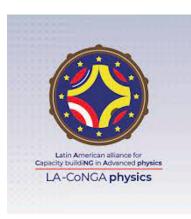


Proximity Effects and spintronics in low dimensional systems

Ernesto Medina Departamento de Física, USFQ



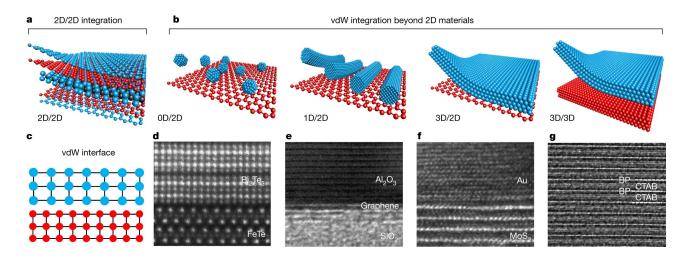
Proximity Effects and spintronics in low dimensional systems

Ernesto Medina Departamento de Física, USFQ

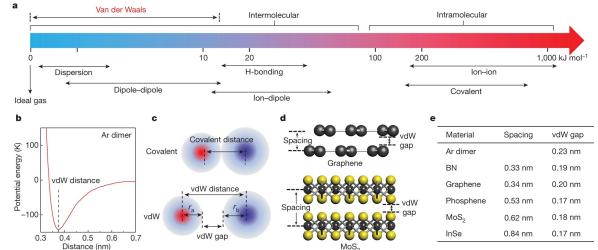
Summary

- Clarity of simplest models versus ab initio calculations, the case of Ni/Co and Au on graphene: Band folding/Matrix perturbation theory
 - Ferro and AntiFerro on graphene without degrading its properties
 - Strong spin-orbit coupling induced by Au
- Spin activity in the absence of exchange interactions and magnetic centers. The case of CISS
 - Chiral molecules as a spin polarizers
 - Hydrogen bonding generate Rashba interactions
 - Stretching molecules and Molecular spectroscopy/SO enhancement

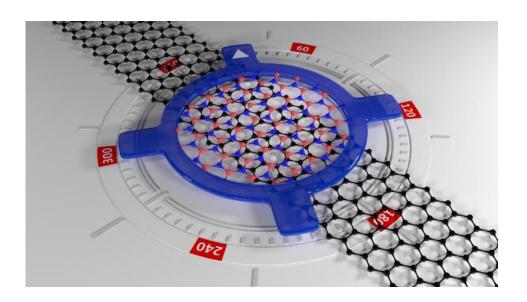
Van der Waals Materials/Proximity coupling



Liu, Huang, Duan, Nature volume, 567, 323–333 (2019)



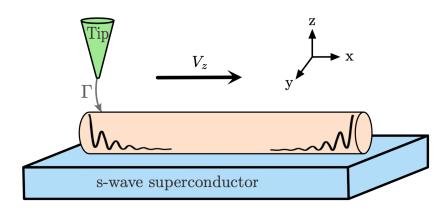
Twistronics/Majorana



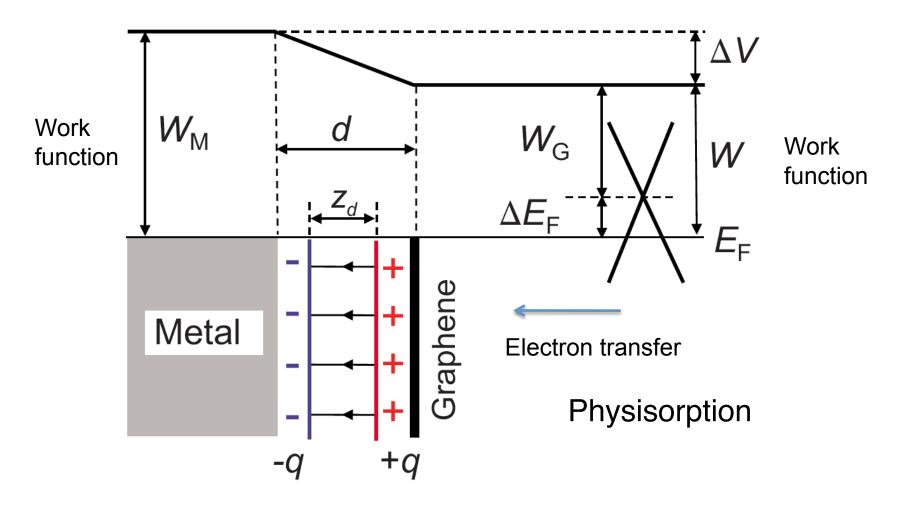
Provide a state of the state of

Magic angles at which the fermi velocity -> 0 then magnetism and superconductivity arise

Rashba (SO coupling) nanowire on superconductor

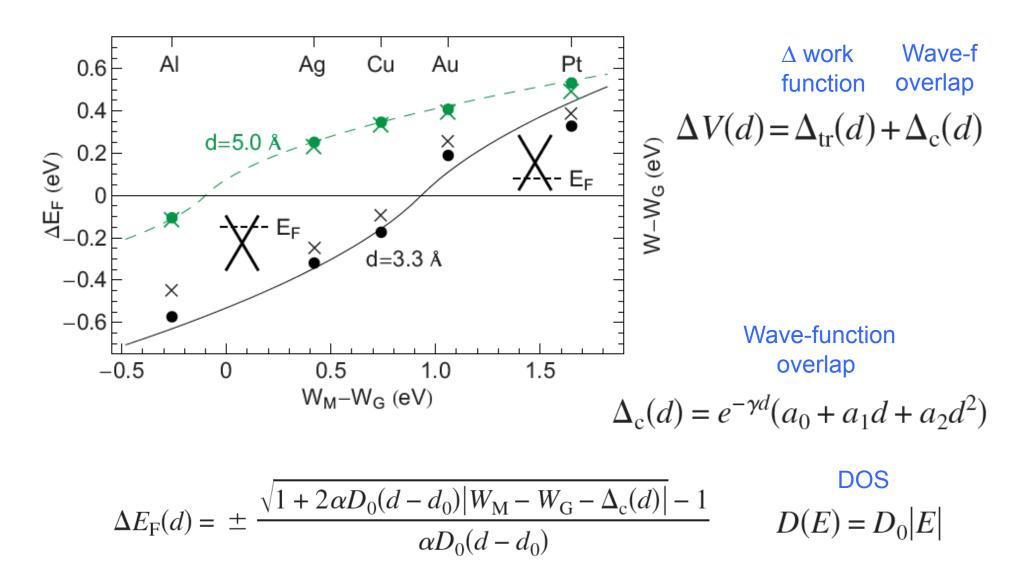


Proximity regimes: Substrate effects



Khomyakov et al (2009)

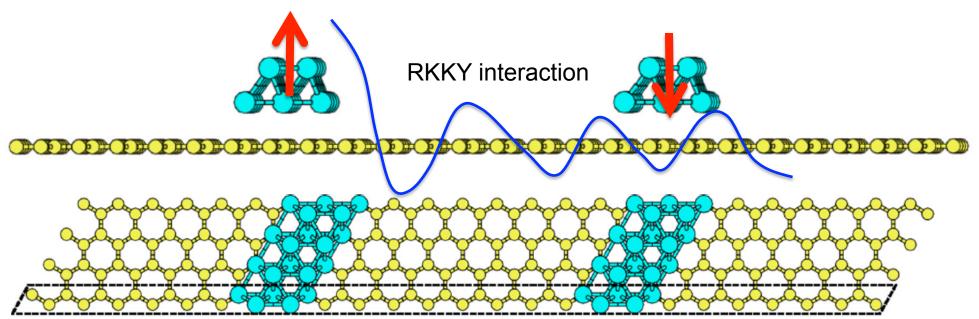
Changes in chemical potential

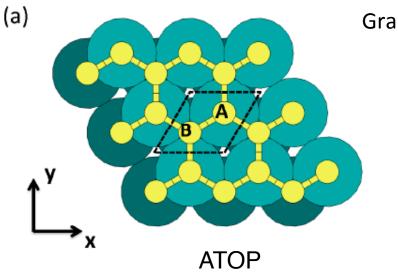


Why proximity effects?

- Defects and impurities reduce desirable mobility properties
- Can dope n or p with metals gauging the distance without gating (graphene has no carriers without doping)
- Can induce spin-orbit interaction without substitutional heavy atoms
- Induce A-B asymmetries for semiconducting properties

Proximity effects: Co over graphene





Graphene

The sign of the interaction can be manipulated by a gate voltage

BUT! Coupling produces AF interactions!

McDonald et al PRB 2013

Co-Graphene bands

3

Minority

spin

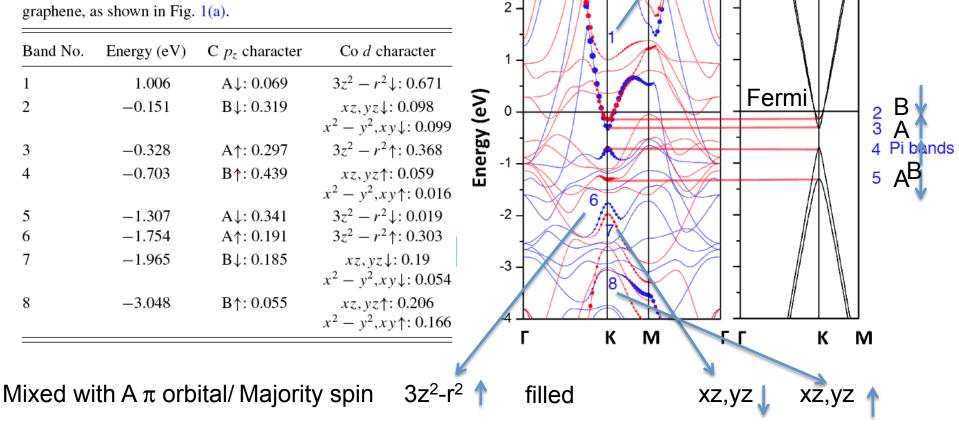
3z²-r² ↓

(c)

unfilled

ATOP configuration

TABLE I. Orbital character of the bands in Fig. 1(b) at the K point of the 2D Brillouin zone. Only those having strong carbon p_z (b) characters are listed. A and B correspond to the two sublattices of graphene, as shown in Fig. 1(a).



Proximity effects: Co over graphene

Empirical model McDonald et al 2012

$$H = \mu + \hbar v_F k \cdot \sigma - h_0 \sigma_z - h_z \sigma_z - h_z \sigma_z \sigma_z$$

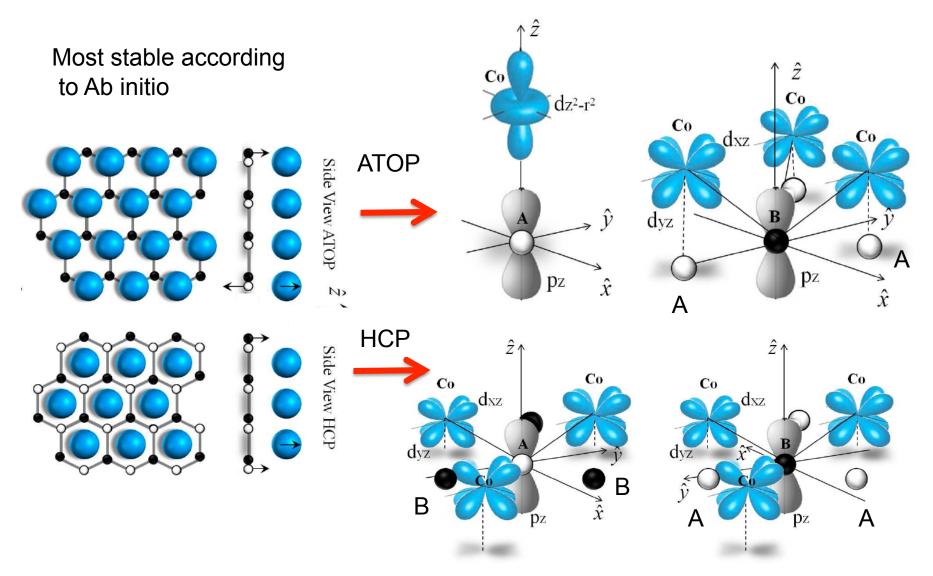
Electron transfer Graphene

Asymmetric Lattice/ pseudo spin Asymmetric spin

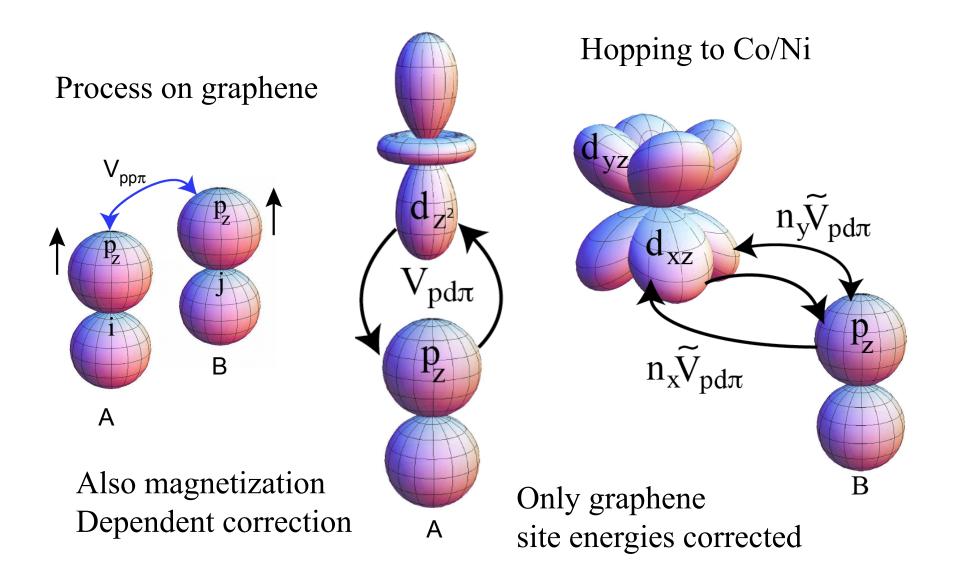
Asymmetric Spin/pseudospin

We can derive it from tight binding and determine the coefficients Design appropriately each term

Lattice registries



Atop configuration



Co over graphene couplings H_{γ} T

	A,Pz	B,Pz	d _z ²	d _{xz}	d _{yz}
A,Pz	ε _p	$V_{ hop\pi}$	V_{pdz^2}	0	0
B,Pz	$V_{ m pp\pi}$	ε _p	0	$\hat{n}_{x} ilde{V}_{pd\pi}$	$\hat{n}_{\!\scriptscriptstyle y} ilde{V}_{\!\scriptscriptstyle p c \! h \! \pi}$
d _z ²	$-V_{pdz^2}$	0	$\varepsilon_{dz^2} + \delta_1 S_z$	0	0
d _{xz}	0	$-\hat{n}_{\!_X} ilde{V}_{\!_{p\!c\!h\!\pi}}$	0	$\varepsilon_{dxz} + \delta_2 S_z$	0
d _{yz}	0	$-\hat{n}_{\!\scriptscriptstyle Y}^{} \! ilde{\!$	0	0	$\varepsilon_{dyz} + \delta_2 S_z$

Want an effective \mathcal{H}_{2x2}

Can also apply real space Feynman method

Matrix perturbation theory

Instead of Feynman paths we use Foldy-Wouthuysen band folding approach

$$\begin{pmatrix} H_{\gamma} & T \\ T^{\dagger} & H_{\chi} \end{pmatrix} \begin{pmatrix} \gamma \\ \chi \end{pmatrix} = E \begin{pmatrix} \gamma \\ \chi \end{pmatrix}$$

$$T^{\dagger} \gamma + H_{\chi} \chi = E \chi \qquad H_{\gamma} \gamma + T \chi = E \gamma$$

$$T^{\dagger} \gamma = \begin{pmatrix} E - H_{\chi} \end{pmatrix} \chi \qquad \begin{pmatrix} H_{\gamma} + T \left(E - H_{\chi} \right)^{-1} T^{\dagger} \end{pmatrix} \gamma = E \gamma$$

$$\begin{pmatrix} E - H_{\chi} \end{pmatrix}^{-1} T^{\dagger} \gamma = \chi$$

$$\frac{1}{E - H_{\chi}} = -\frac{1}{H_{\chi} \left(1 - \left(H_{\chi} \right)^{-1} E \right)} = -\frac{1}{H_{\chi}} \left(1 + \frac{E}{H_{\chi}} + \dots \right)$$
Eigenvalues of H_{\chi} > E

Matrix perturbation theory

$$\begin{pmatrix} H_{\gamma} - T \frac{1}{H_{\chi}} \left(1 + \frac{E}{H_{\chi}} + \dots \right) T^{\dagger} \right) \gamma = E \gamma$$

$$\begin{pmatrix} H_{\gamma} - T \frac{1}{H_{\chi}} T^{\dagger} \end{pmatrix} \gamma = E \gamma + \left(T \frac{1}{H_{\chi}} \frac{E}{H_{\chi}} T^{\dagger} \right) \gamma = E \left(1 + T \left(H_{\chi} \right)^{-2} T^{\dagger} \right) \gamma = E S \gamma$$

$$S$$

Define

$$\Phi = S^{1/2} \gamma \qquad S^{-1/2} \Phi = \gamma$$
$$S^{-1/2} \left(H_{\gamma} - T \frac{1}{H_{\chi}} T^{\dagger} \right) S^{-1/2} \Phi = E \Phi$$

Matrix perturbation theory

$$\Phi^{\dagger}\Phi = \gamma^{\dagger}S^{1/2}S^{1/2}\gamma = \gamma^{\dagger}\left(1 + T\left(H_{\chi}\right)^{-2}T^{\dagger}\right)\gamma \approx \gamma^{\dagger}\gamma + \chi^{\dagger}\chi$$

Norm must be Consistent in perturbation

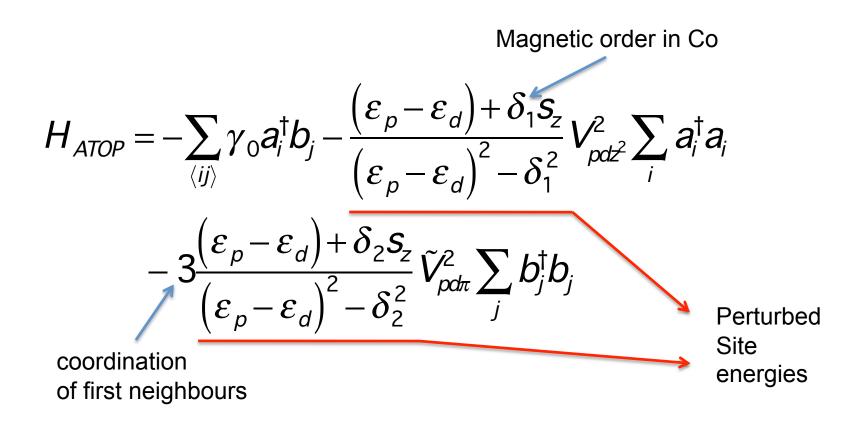
$$S^{-1/2} \left(H_{\gamma} - T \frac{1}{H_{\chi}} T^{\dagger} \right) S^{-1/2} \Phi = E \Phi$$

 $\mathcal{H}_{\mathsf{eff}}$

With dimension of H_{γ}

As γ is the subspace of p_z these orbitals are dressed by the couplings.

ATOP configuration



Full Brillouin zone

ATOP in vicinity of K points

$$H_{\text{ATOP}}(\mathbf{k}) = \begin{pmatrix} \mu - h_{0z} - \frac{h_{z0}}{2} - \frac{h_{zz}}{2} & v(\xi p_x - ip_y) & 0 & 0\\ v(\xi p_x + ip_y) & \mu - h_{0z} + \frac{h_{z0}}{2} + \frac{h_{zz}}{2} & 0 & 0\\ 0 & 0 & \mu + h_{0z} - \frac{h_{z0}}{2} + \frac{h_{zz}}{2} & v(\xi p_x - ip_y)\\ 0 & 0 & v(\xi p_x + ip_y) & \mu + h_{0z} + \frac{h_{z0}}{2} - \frac{h_{zz}}{2} \end{pmatrix}$$

$$H_{ATOP}(k=0) = \mu \Uparrow_{\sigma} \Uparrow_{s} - h_{0z}\sigma_{z} \Uparrow_{s} - \frac{h_{z0}}{2} \Uparrow_{\sigma} s_{z} - \frac{h_{zz}}{2}\sigma_{z}s_{z}$$

The McDonald Hamiltonian

$$-\frac{V_{pdz}^2(\varepsilon_p - \varepsilon_d)}{(\varepsilon_p - \varepsilon_d)^2 - \delta_1^2} = \mu - h_{0z}, \qquad \frac{\delta_1 V_{pdz}^2}{(\varepsilon_p - \varepsilon_d)^2 - \delta_1^2} = \frac{(h_{z0} + h_{zz})}{2}$$
$$-3\frac{\widetilde{V}_{pd\pi}^2(\varepsilon_p - \varepsilon_d)}{(\varepsilon_p - \varepsilon_d)^2 - \delta_2^2} = \mu + h_{0z}, \qquad 3\frac{\delta_2 \widetilde{V}_{pd\pi}^2}{(\varepsilon_p - \varepsilon_d)^2 - \delta_2^2} = \frac{(h_{z0} - h_{zz})}{2}$$

ATOP in vicinity of K points

$$\epsilon_{v}(\mathbf{k}) = \frac{1}{2} \left(2\mu - s_{z}h_{z0} - \sqrt{(2h_{0z} + s_{z}h_{zz})^{2} + 4v^{2}\hbar^{2}|\mathbf{k}|^{2}} \right) \quad \mathbf{0.5}$$

$$\epsilon_{c}(\mathbf{k}) = \frac{1}{2} \left(2\mu - s_{z}h_{z0} + \sqrt{(2h_{0z} + s_{z}h_{zz})^{2} + 4v^{2}\hbar^{2}|\mathbf{k}|^{2}} \right) \quad \mathbf{0.6}$$

$$-\mathbf{0.5}$$

$$\mathbf{A} \text{ sublattice AF wrt Co}$$

$$\mathbf{B} \text{ sublattice F wrt Co}$$

$$-\mathbf{1.6}$$

$$-\mathbf{1.$$

Depending on overlaps and coordination

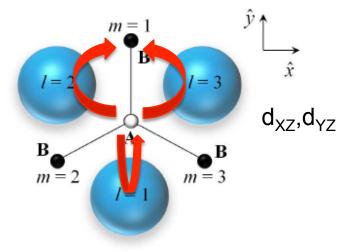
M. Peralta et al PRB (2019)

HCP real space Hamiltonian $H_{\gamma} = T$							
	A,Pz	B,Pz	d _z ²	d _{xz}	d _{yz}		
A,Pz	ε _p	$V_{ m pp\pi}$	0	$\hat{n}_{x} ilde{V}_{ ho d\pi}$	$\hat{n}_{y} ilde{V}_{ m potr}$		
B,Pz	$V_{ m pp\pi}$	${\cal E}_p$	0	$\hat{n}_{x} ilde{V}_{ ho d\pi}$	$\hat{n}_{\!\scriptscriptstyle y} ilde{V}_{\!\scriptscriptstyle p c \! l \pi}$		
d _z ²	0	0	$\varepsilon_{dz^2} + \delta_1 S_z$	0	0		
d _{xz}	$-\hat{n}_{\!x} ilde{\!V}_{\! m pd\!\pi}$	$-\hat{n}_{_{\!X}}\! ilde{V}_{\! m pd\!\pi}$	0	$\varepsilon_{dxz} + \delta_2 s_z$	0		
d _{yz}	$-\hat{n}_{\!\scriptscriptstyle y}^{} ilde{\!$	$-\hat{n_y} ilde{V}_{ m poln}$	0	0	$\varepsilon_{dyz} + \delta_2 s_z$		

Want an effective \mathcal{H}_{2x2}

 H_{χ}

HCP bands



$$H_{\rm HCP}(\mathbf{k}) = \begin{pmatrix} -3\frac{\varepsilon + \delta_2}{\varepsilon^2 - \delta_2^2} \widetilde{V}_{pd\pi}^2 & 0 & -\frac{v}{\gamma_0} (-\gamma_0 + \frac{\varepsilon + \delta_2}{\varepsilon^2 - \delta_2^2} \widetilde{V}_{pd\pi}^2) p^* & 0 \\ 0 & -3\frac{\varepsilon - \delta_2}{\varepsilon^2 - \delta_2^2} \widetilde{V}_{pd\pi}^2 & 0 & -\frac{v}{\gamma_0} (-\gamma_0 + \frac{\varepsilon - \delta_2}{\varepsilon^2 - \delta_2^2} \widetilde{V}_{pd\pi}^2) p^* \\ -\frac{v}{\gamma_0} (-\gamma_0 + \frac{\varepsilon + \delta_2}{\varepsilon^2 - \delta_2^2} \widetilde{V}_{pd\pi}^2) p & 0 & -3\frac{\varepsilon + \delta_2}{\varepsilon^2 - \delta_2^2} \widetilde{V}_{pd\pi}^2 & 0 \\ 0 & -\frac{v}{\gamma_0} (-\gamma_0 + \frac{\varepsilon - \delta_2}{\varepsilon^2 - \delta_2^2} \widetilde{V}_{pd\pi}^2) p & 0 & -3\frac{\varepsilon - \delta_2}{\varepsilon^2 - \delta_2^2} \widetilde{V}_{pd\pi}^2 \end{pmatrix} p \end{pmatrix}$$

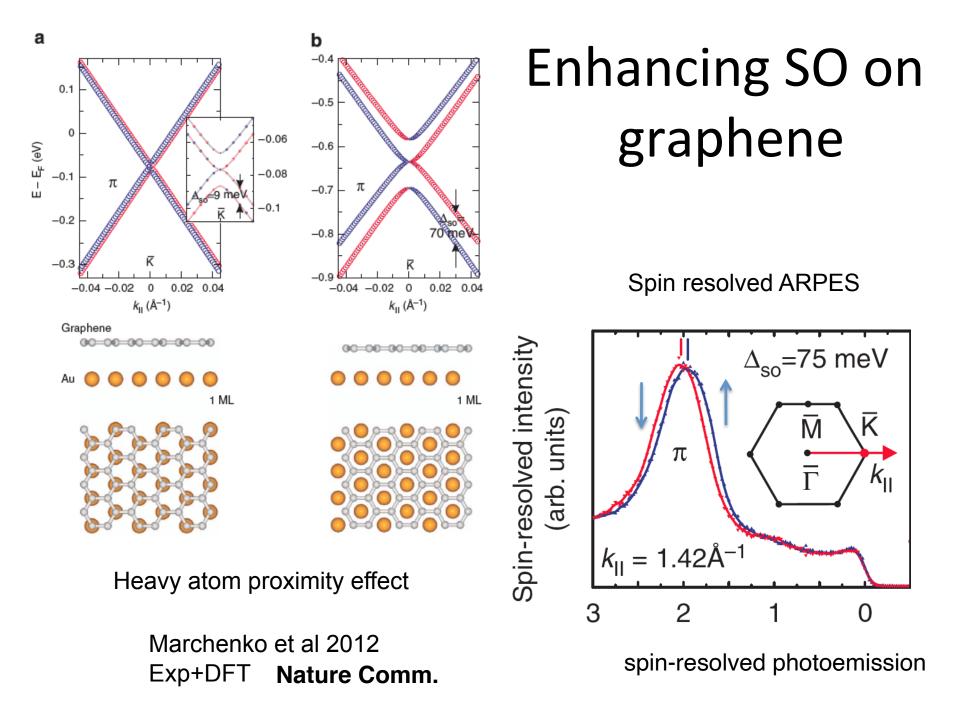
$$\epsilon_{v}(\mathbf{k}) = -\mu' + s_{z}h'_{z0} + \frac{v\hbar}{\gamma_{0}}(-\gamma_{0} - h'_{0x} + s_{z}h'_{zx})|\mathbf{k}|$$
$$\epsilon_{c}(\mathbf{k}) = -\mu' + s_{z}h'_{z0} - \frac{v\hbar}{\gamma_{0}}(-\gamma_{0} - h'_{0x} + s_{z}h'_{zx})|\mathbf{k}|$$

HCP Bands

$$\begin{split} H_{\rm HCP}(\mathbf{k}) &= -\mu' \begin{pmatrix} A^{\uparrow+B\uparrow} & A^{\downarrow+B\downarrow} & A^{\uparrow-B\uparrow} & A^{\downarrow-B\downarrow} \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} + \frac{v\hbar}{\gamma_0} |\mathbf{k}| (h'_{0x} + \gamma_0) \begin{pmatrix} A^{\uparrow+B\uparrow} & A^{\downarrow+B\downarrow} & A^{\uparrow-B\uparrow} & A^{\downarrow-B\downarrow} \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \\ &- h'_{z0} \begin{pmatrix} A^{\uparrow+B\uparrow} & A^{\downarrow+B\downarrow} & A^{\uparrow-B\uparrow} & A^{\downarrow-B\downarrow} \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} + \frac{v\hbar}{\gamma_0} |\mathbf{k}| h'_{zx} \begin{pmatrix} A^{\uparrow+B\uparrow} & A^{\downarrow+B\downarrow} & A^{\uparrow-B\uparrow} & A^{\downarrow-B\downarrow} \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{pmatrix} \\ &+ \frac{v\hbar}{\gamma_0} |\mathbf{k}| h'_{zx} \begin{pmatrix} A^{\uparrow+B\uparrow} & A^{\downarrow+B\downarrow} & A^{\uparrow-B\uparrow} & A^{\downarrow-B\downarrow} \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{pmatrix} \end{split}$$

$$H_{ATOP}(k=0) = -\mu' \Uparrow_{\sigma} \Uparrow_{s} - \frac{\sqrt{h}}{\gamma_{0}} |k| (h'_{0x} + \gamma_{0}) \sigma_{z} \Uparrow_{s} - h'_{z0} \Uparrow_{\sigma} s_{z}$$

$$-\frac{\nabla\hbar}{\gamma_{0}} | \mathbf{k} | \mathbf{h'}_{zx} \sigma_{z} \mathbf{s}_{z} \qquad \langle S_{z} \rangle = \langle A \uparrow -B \uparrow | \mathbb{1}_{\sigma} S_{z} | A \uparrow -B \uparrow \rangle$$
$$= \frac{1}{2} \begin{pmatrix} 1 & 0 & -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix} = 1$$
Magnetization of states

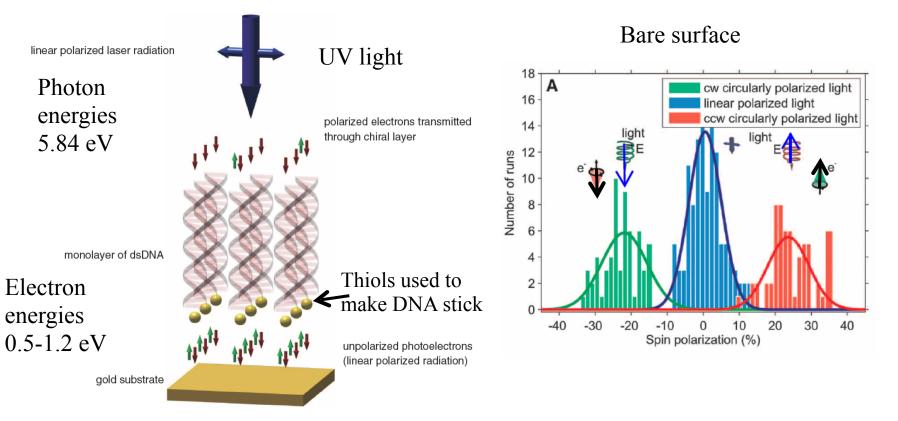


A. Lopez et al PRB (2019)

Experiments: Polarizing photoelectrons

Spin Selectivity in Electron Transmission Through Self-Assembled Monolayers of Double-Stranded DNA 18 FEBRUARY 2011 VOL 331 SCIENCE

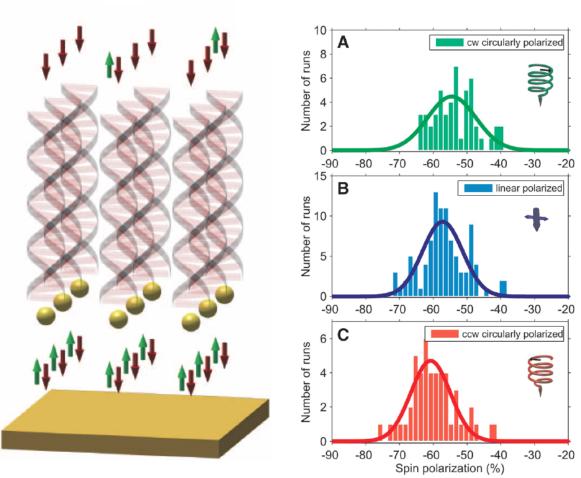
B. Göhler,¹ V. Hamelbeck,¹ T. Z. Markus,² M. Kettner,¹ G. F. Hanne,¹ Z. Vager,³ R. Naaman,²* H. Zacharias¹

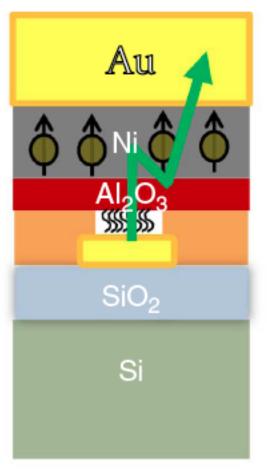


Electron polarization with organic molecules

Naaman Nanolett. 2011

Nature 2013

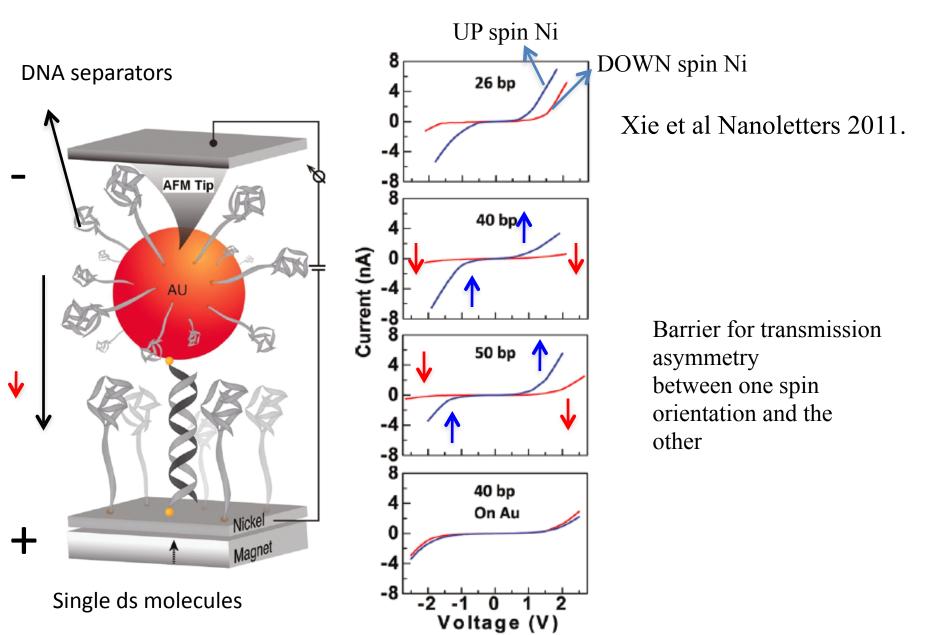




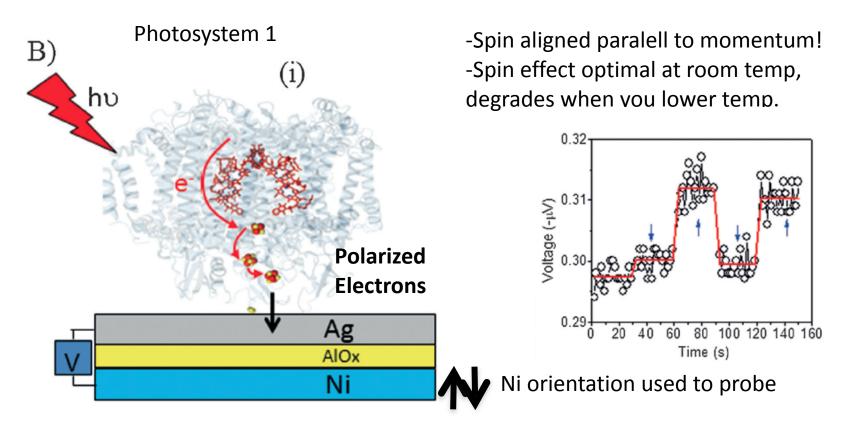
Chirality \rightarrow electron polarization

Devices

Tunneling electron polarization



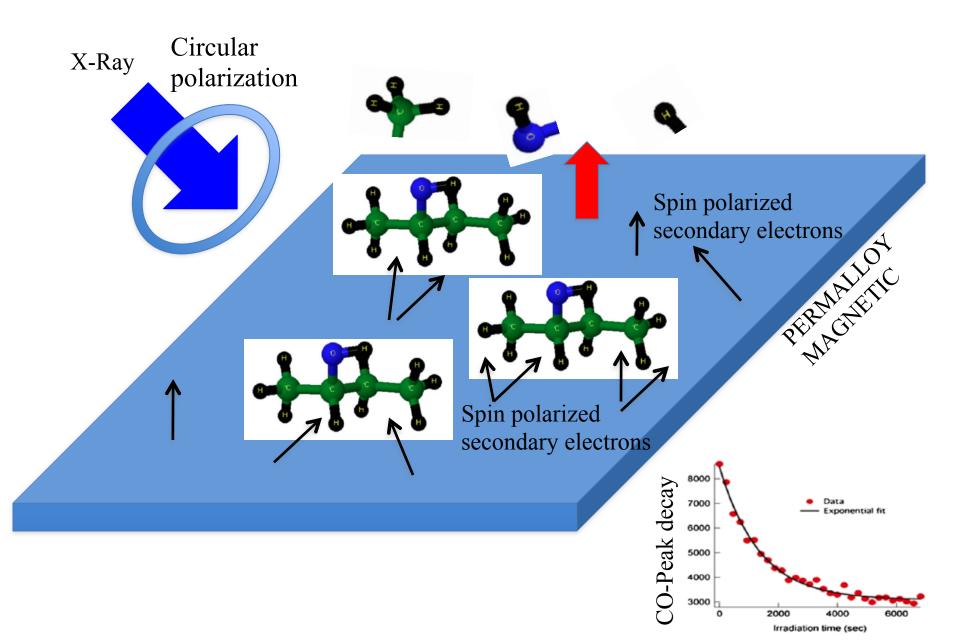
Photosystem 1



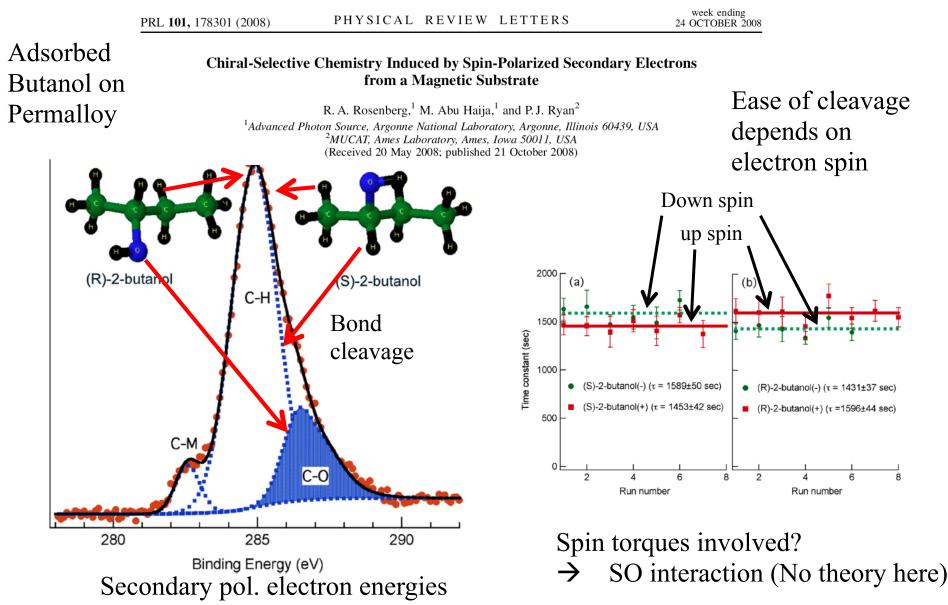
Voltage between Ag and Ni tells spin accumulation orientation

Naaman et al Angewandte Chemie 2014

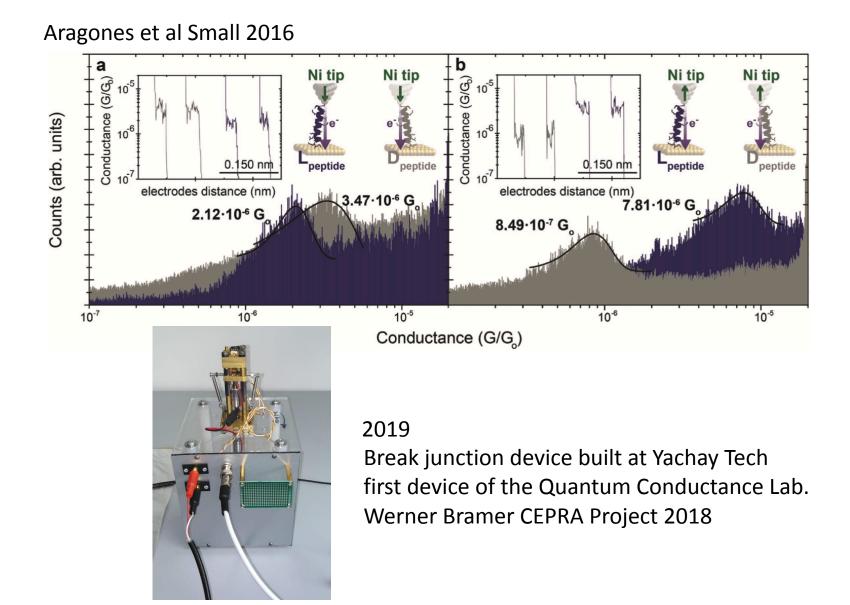
Chiral reactions



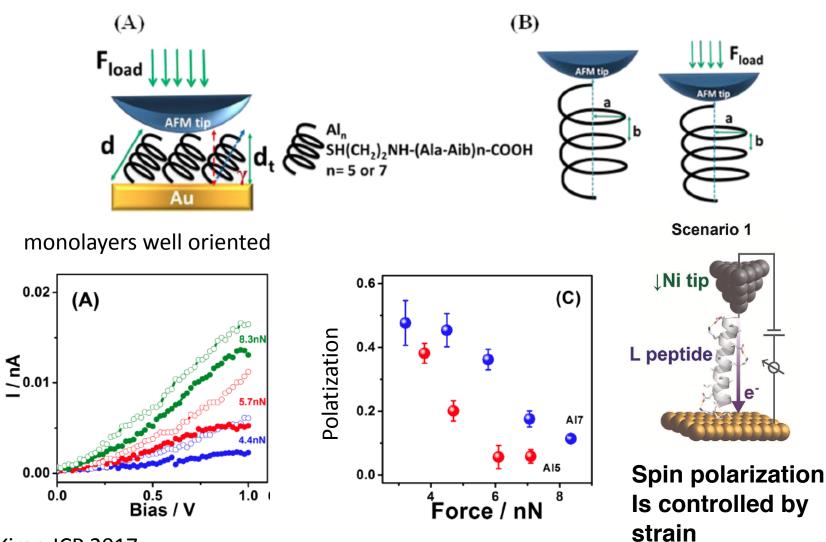
Experiments: Chiral reactions spin sensitive



Conductance Histograms



Experiments stretching oligopeptides



Kiran JCP 2017

Summary of experiments

Usual suspects

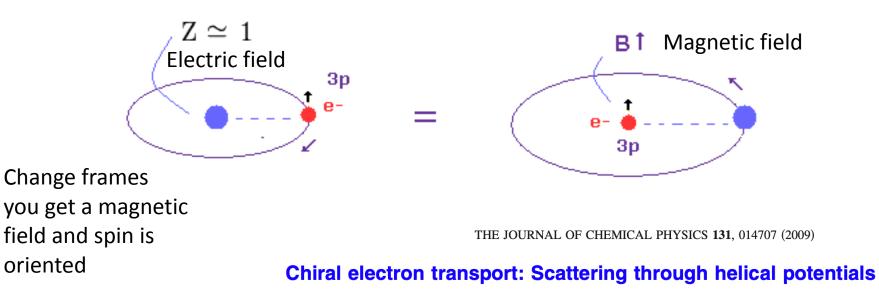
- No magnetic fields present
- No magnetic centers (relatively light atoms C, N, O)
- No sources of exchange interactions

Spin polarization intensities

- Polarizations measured larger than those induced by a ferromagnet!
- Chirality a critical ingredient (popular in biol. systems)
- Surfaces appear not to play a role

Where does spin activity come from?

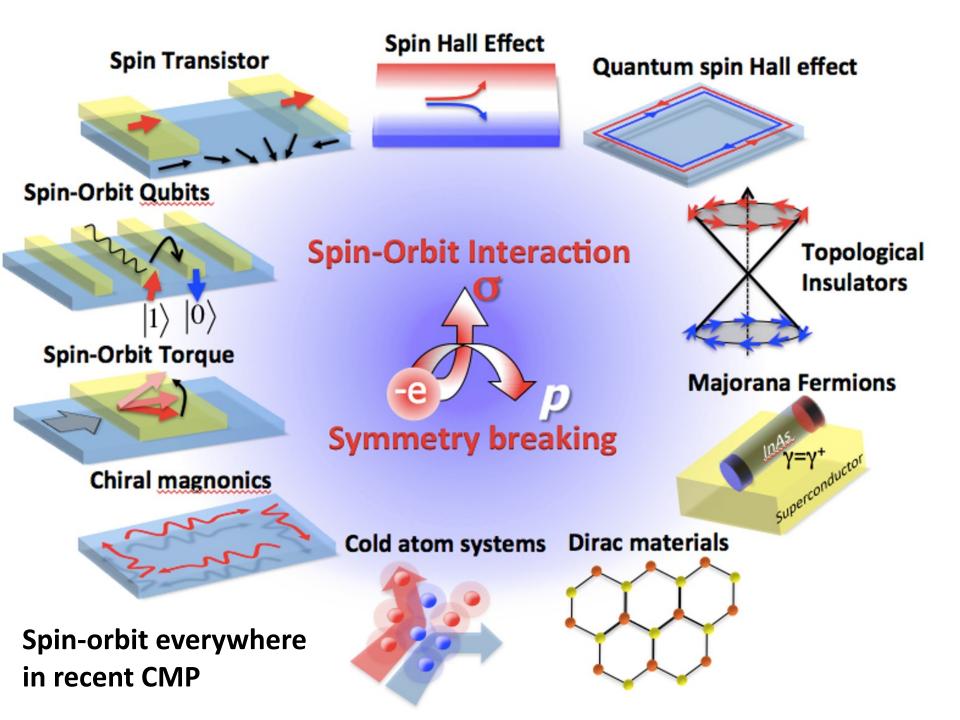
On the theoretical side we surmised that the spin-orbit interaction was to blame



Sina Yeganeh,¹ Mark A. Ratner,^{1,a)} Ernesto Medina,² and Vladimiro Mujica^{1,3,b)} ¹Department of Chemistry and Center for Nanofabrication and Molecular Self-Assembly, Northwestern University, Evanston, Illinois 60208-3113, USA ²Laboratorio de Física Estadística de Sistemas Desordenados, Centro de Física, IVIC, Apartado 21827, Caracas 1020A, Venezuela

³Argonne National Laboratory, Center for Nanoscale Materials, Argonne, Illinois 60439-4831, USA

(Received 20 March 2009; accepted 10 June 2009; published online 7 July 2009)



The spin-orbit interaction in the vacuum

• The Spin-orbit interaction in the vacuum (free fields/charges) comes from the Pauli Eq.

$$\mathscr{H} = \frac{p^{2}}{2m_{o}} + V + V_{0} + \frac{e\hbar}{2m_{0}}\sigma \cdot B - \frac{e\hbar\sigma \cdot p \times \mathscr{C}}{4m_{o}^{2}c^{2}} + \frac{e\hbar^{2}}{8m_{0}^{2}c^{2}}\nabla \cdot \mathscr{C}$$

$$-\frac{p^{4}}{8m_{0}^{3}c^{2}} - \frac{e\hbar p^{2}}{4m_{0}^{3}c^{2}}\sigma \cdot B - \frac{(e\hbar B)^{2}}{8m_{0}^{3}c^{2}}$$

$$V = 10^{6} \text{ m/s}$$
Bare SO interaction
$$\mathscr{C} = 10^{6} \text{ V/m} \qquad \mathscr{C} = 10^{9} \text{ V/m}$$

$$\mathscr{C} = 10^{6} \text{ V/m} \qquad \mathscr{C} = 10^{9} \text{ V/m}$$

$$2 \times 10^{-9} \text{ eV} \qquad 2 \times 10^{-6} \text{ eV}$$
very small bare interaction because of denominator effects

Summary of external sources

- Reasonable external sources of electric field cannot explain the experimental results (eV range) $10^6 10^9 V/m$
- Electric fields from electronegativity polarization are also too small
- What about internal fields?

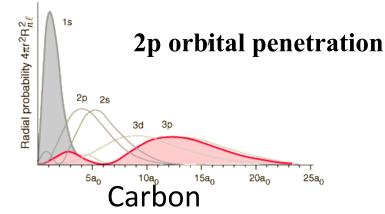
Spin-orbit interaction from atomic source

From the strongest electric fields present: Close to the atomic nucleus

$$\langle p_z | H_{SO} | p_{x,y} \rangle = \langle p_z | \frac{e\hbar}{4m_0^2 c^2} s \cdot (p \times \mathcal{E}) | p_{x,y} \rangle \approx meV$$
 Carbon

$$=\frac{\left(me^{4}Z^{2} / 2\hbar^{2}n^{2}\right)^{2}}{3m_{0}c^{2}}$$

Evaluated at angular momentum of hydrogenic electron exposure to inner cores



Involved fields top $10^{12} \ V/m$

SO from atomic source

 Source of SO is from atomic SO coupling, C, N, O involved (Electric field of atomic cores)

Table 3.2.

f.... [1]

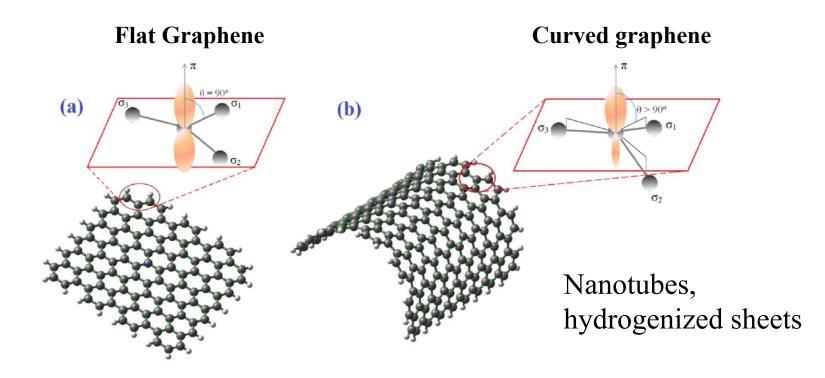
J. Chem. Phys. (2009) Europhys Lett. (2012) J. Chem. Phys (2015) Phys. Rev. B (2016)

from [15]					
Be	B	С	N	0	F
0.002	0.004	0.006	0.009	0.010	0.010
Mg	Al	Si	P	S	Cl
0.01	0.024	0.044	0.08	0.09	0.09
Zn	Ga	Ge	As	Se	Br
0.10	0.18	0.29	0.43	0.48	0.49
Cd	In	Sn	Sb	Te	I
0.10	0.36	0.80	1.05	1.10	1.11
Hg	Tl	Pb			
0.5	0.9	2.0			

Contribution Δ_j of atom j to the SO splitting Δ_0

How SO is enhanced by geometry

Example Graphene



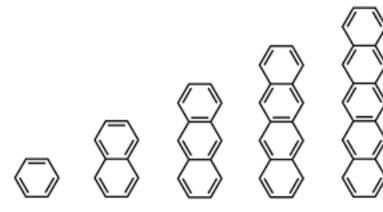
SO Coupling = $1\mu eV$

Second order in interaction

SO Coupling = 1meV

first order in interaction

Bencene, Napthalene...versus helicene



Benzene Naphthalene Anthracene Tetracene

Pentacene

Very small SO second order in atomic SO

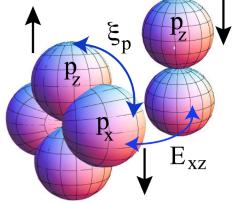
Helicene

Three orders of magnitude larger SO, First order in atomic SO

Evidence SO is coming from the atomic SO and the WF overlaps

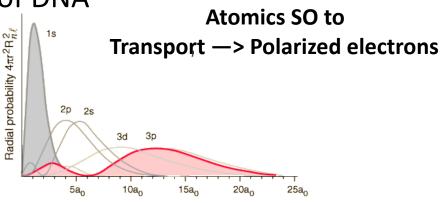
SO from the atomic cores an intuitive approach

SO comes from Atomic coupling



SO Intrinsic

With geometry of DNA

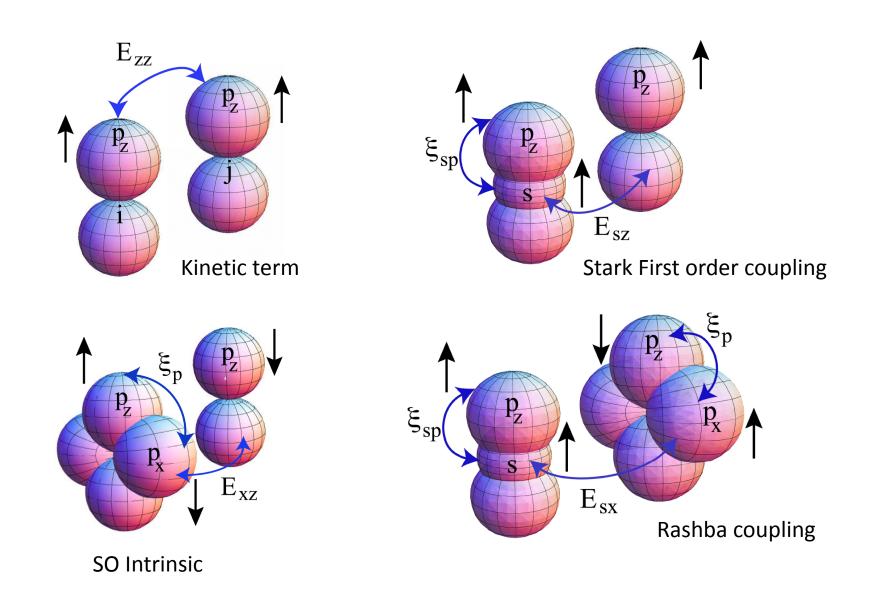


Evaluated at angular momentum of hydrogenic electron exposure to inner cores

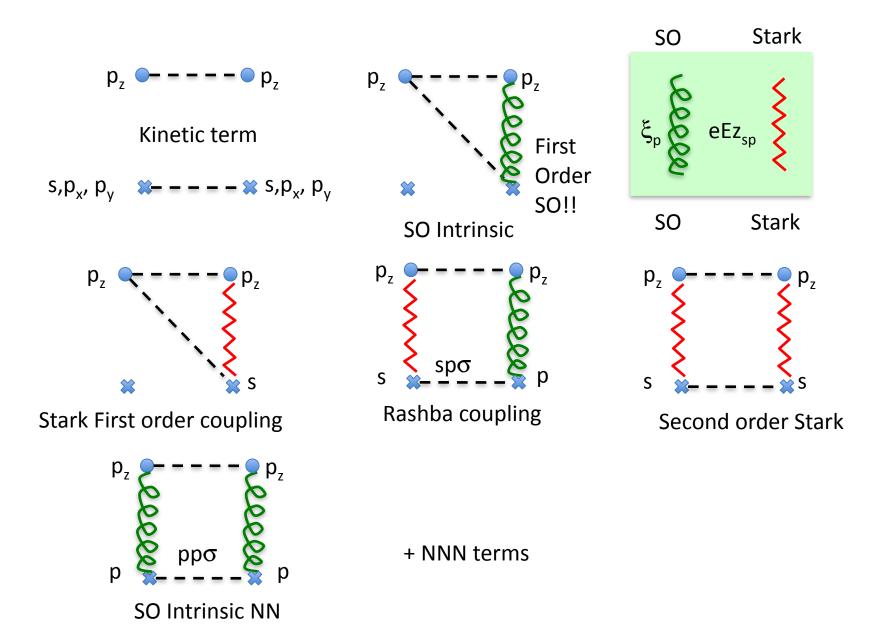
$$\langle p_z | H_{SO} | p_{x,y} \rangle = \langle p_z | \frac{e\hbar}{4m_0^2 c^2} s \cdot (p \times \mathcal{E}) | p_{x,y} \rangle \approx meV$$
 Carbon

 $= \frac{\left(me^{4}Z^{2}/2\hbar^{2}n^{2}\right)^{2}}{3m_{0}c^{2}} = \xi_{p} \qquad \text{Involved fields top} \quad 10^{12} \text{ V/m}$

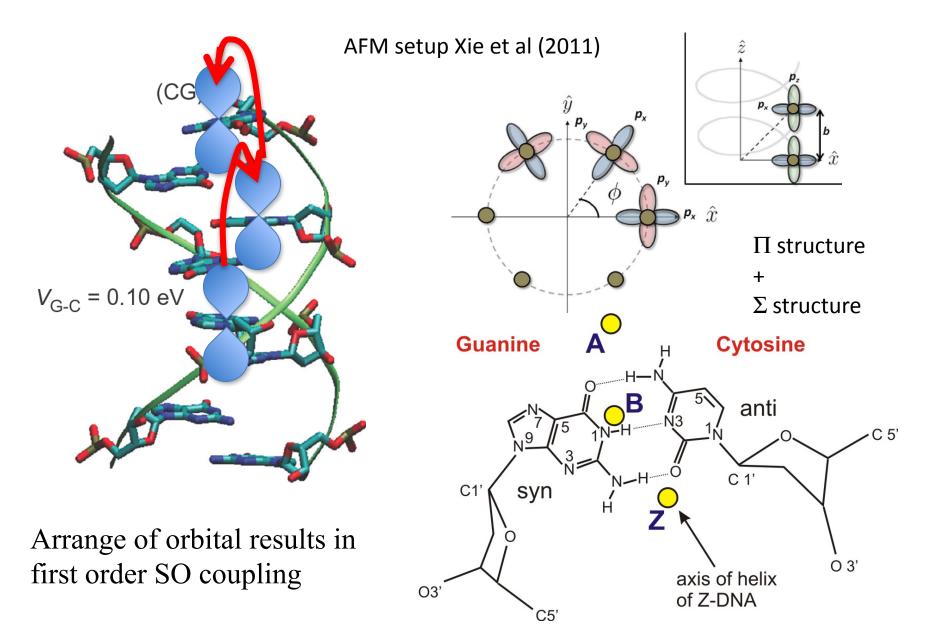
Orbital hoppings



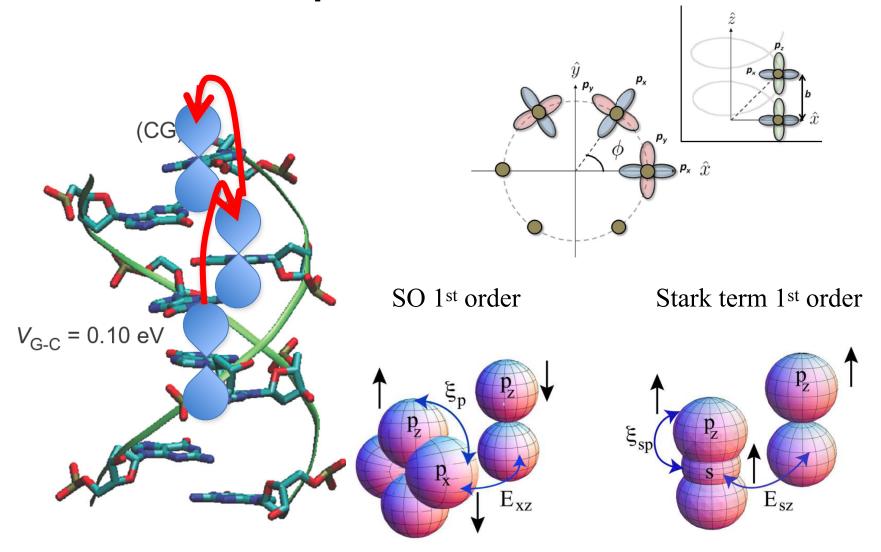
Lowest order terms



Electrons bound to states in molecule

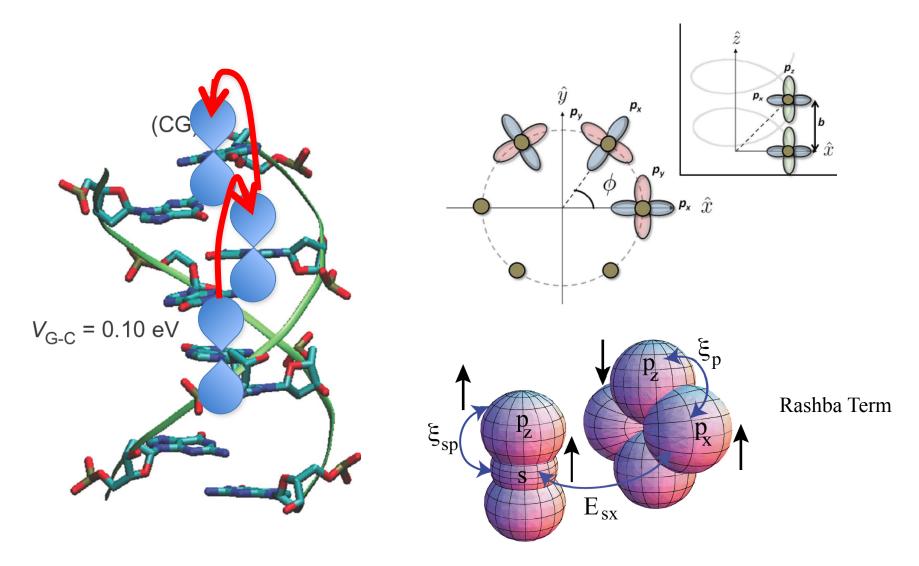


Transport model DNA



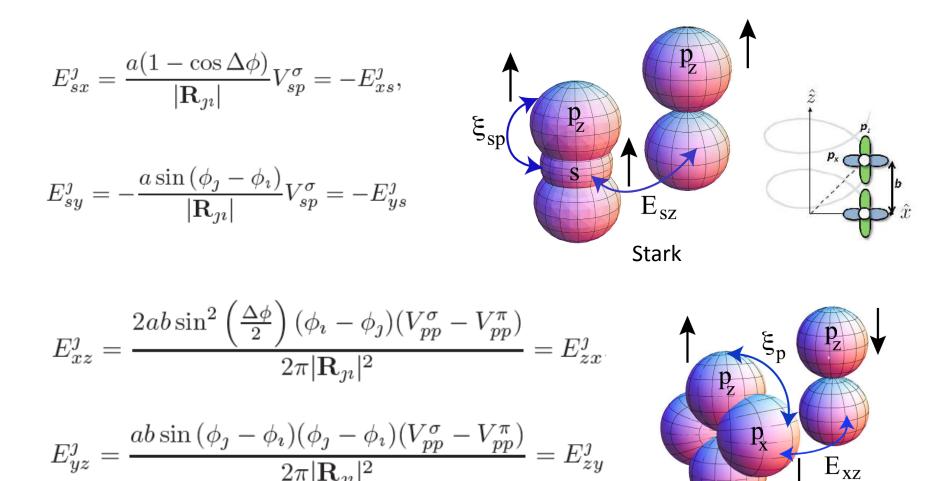
Varela, Mujica, Medina 2016

Transport model DNA



Varela, Mujica, Medina 2016

Overlaps with DNA twist

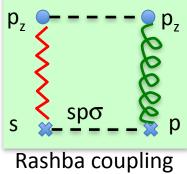


Intrinsic SO

Tight binding Hamiltonian

$$\begin{split} H_{K}^{in} &= \left[V_{pp}^{\pi(in)} \\ &+ \frac{b^{2} \Delta \phi^{2} \left(V_{pp}^{\sigma(in)} - V_{pp}^{\pi(in)} \right)}{8\pi^{2} a^{2} (1 - \cos \Delta \phi) + b^{2} \Delta \phi^{2}} \right] \sum_{ij} c_{i}^{\dagger} c_{j}, \\ &= t^{in} \sum_{ij} c_{i}^{\dagger} c_{j}, \quad \text{inside strand (in)} \end{split} \\ H_{K}^{out} &= V_{pp}^{\pi(out)} \sum_{ij} c_{i}^{\dagger} c_{j}, \\ &= t^{out} \sum_{ij} c_{i}^{\dagger} c_{j}, \\ &= t^{out} \sum_{ij} c_{i}^{\dagger} c_{j}, \\ &\text{Between strands (out)} \end{aligned}$$

Tight binding terms



$$H_R^{in} = i \sum_{ij} c_i^{\dagger} \left(\lambda_R^{in(1)} s_y + \nu_j \lambda_R^{in(2)} s_x \right) c_j,$$

$$\lambda_{R}^{in(1)} = \frac{2\pi\xi_{p}\xi_{sp}a(\cos\Delta\phi - 1)V_{sp}^{in}}{\sqrt{8\pi^{2}a^{2}(1 - \cos\Delta\phi) + b^{2}\Delta\phi^{2}}} \left[\frac{1}{\left(\epsilon_{2p}^{\pi} - \epsilon_{2p}^{\sigma}\right)\left(\epsilon_{2p}^{\pi} - \epsilon_{s}\right) - \frac{2\left(2\pi a(1 - \cos\Delta\phi)V_{sp}^{in}\right)^{2}}{8\pi^{2}a^{2}(1 - \cos\Delta\phi) + b^{2}\Delta\phi^{2}}} - \alpha\right]$$

$$\lambda_R^{in(2)} = -\frac{2\pi\xi_p\xi_{sp}a\sin\Delta\phi V_{sp}^{in}}{\sqrt{8\pi^2a^2(1-\cos\Delta\phi)+b^2\Delta\phi^2}} \left[\frac{1}{\left(\epsilon_{2p}^{\pi}-\epsilon_{2p}^{\sigma}\right)\left(\epsilon_{2p}^{\pi}-\epsilon_s\right)-\frac{2\left(2\pi a\sin\Delta\phi V_{sp}^{in}\right)^2}{8\pi^2a^2(1-\cos\Delta\phi)+b^2\Delta\phi^2}} + \alpha\right]$$

Tight binding terms

Rashba interaction between strands

$$\begin{aligned} H_R^{out} &= i\lambda_R^{out}\sum_{ij}c_i^{\dagger}s_yc_j\\ \lambda_R^{out} &= \frac{\xi_p\xi_{sp}V_{sp}^{out}}{(\epsilon_{2p}^{\pi}-\epsilon_s)(\epsilon_{2p}^{\pi}-\epsilon_{2p}^{\sigma})+(V_{sp}^{out})^2} \end{aligned}$$

Full lowest order Hamiltonian

$$\begin{split} \mathcal{H} &= t^{in} \sum_{\langle ij \rangle}^{helix} c_i^{\dagger} c_j + t^{out} \sum_{\langle ij \rangle}^{base} c_i^{\dagger} c_j + i\lambda_{SO}^{in} \sum_{\langle ij \rangle}^{helix} c_i^{\dagger} \nu_{ij} s_y c_j + i\lambda_R^{in(1)} \sum_{\langle ij \rangle}^{helix} c_i^{\dagger} s_y c_j \\ &+ i\lambda_R^{in(2)} \sum_{\langle ij \rangle}^{helix} c_i^{\dagger} \nu_{ij} s_x c_j + i\lambda_R^{out} \sum_{\langle ij \rangle}^{base} c_i^{\dagger} s_y c_j. \end{split}$$

Analytical Tight-binding

Effective SO coupling

Bare SO

$$\lambda_{SO}^{in} = \frac{4\pi\xi_p ab\Delta\phi(1-\cos\Delta\phi)\left(V_{pp}^{\sigma(in)}-V_{pp}^{\pi(in)}\right)}{(\epsilon_{2p}^{\pi}-\epsilon_{2p}^{\sigma})\left(8\pi^2a^2(1-\cos\Delta\phi)+b^2\Delta\phi^2\right)}$$

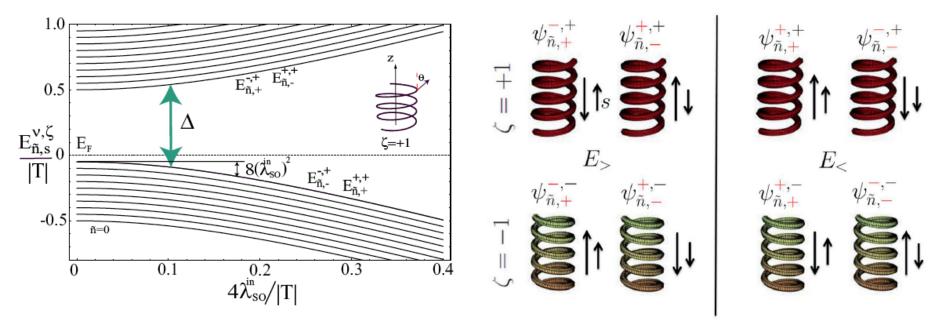
Within each helix

$$\lambda_{R}^{out} = \frac{\xi_{p}\xi_{sp}V_{sp}^{out}}{(\epsilon_{2p}^{\pi} - \epsilon_{s})(\epsilon_{2p}^{\pi} - \epsilon_{2p}^{\sigma}) + (V_{sp}^{out})^{2}}$$
Between helices

Varela, Medina 2016

Results

• For DNA specifically (two independent strands)



gap 10 meV < room temp!</pre>

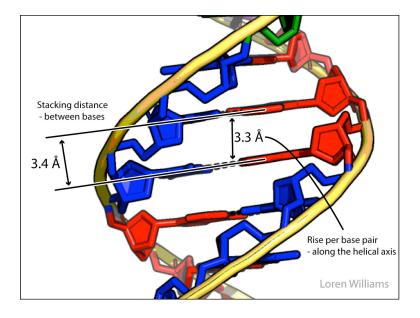
Polarization one order lower than seen in experiments Kramers doublets time reversal symmetry preserved

As in edge states of Topological insulators

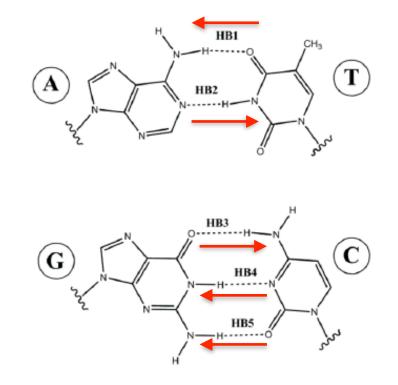
Summary of theory

- Internal source of electric fields
- tight-binding approach gives a broad scenario of the spin effects to be complemented by more detailed calculations
- All qualitative features of the experiment reproduced.... except
 - MAGNITUDE OF THE EFFECT

Dipoles in DNA on Hydrogen bonds

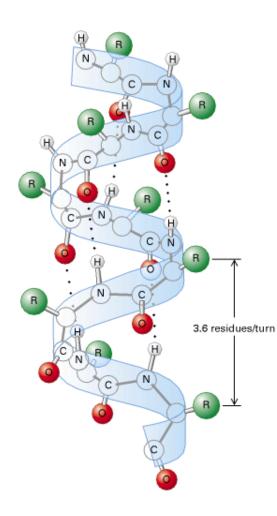


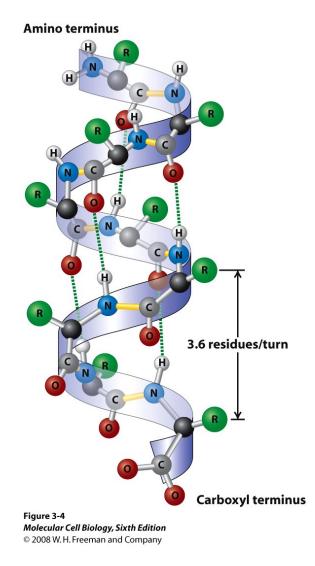
Radial Dipoles

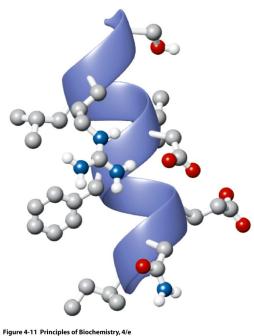


Dipoles almost in plane and tend to cancel out to lower energy

Hydrogen bonds in oligopeptides



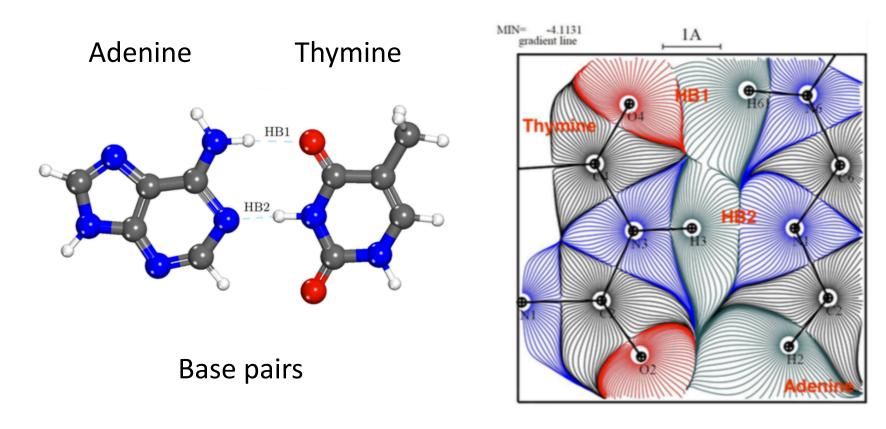




© 2006 Pearson Prentice Hall, Inc.

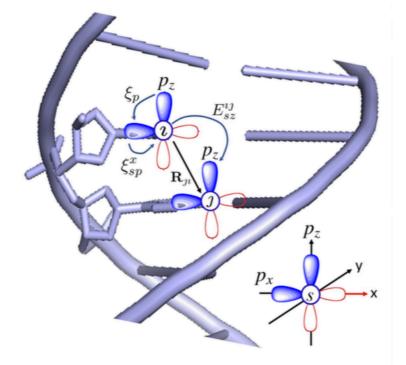
Hidalgo, Torres, Varela Poster session

Electric fields due to vicinity of hydrogen bonding



Electric field lines and Bader surfaces

Hydrogen bond mediated Rashba



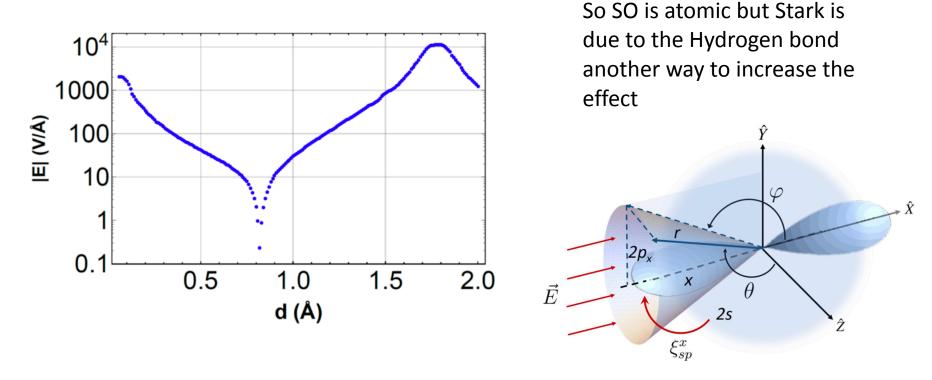
$$H_R = i \sum_{ij} c_i^{\dagger} \left(\lambda_R^x s_y + \lambda_R^y s_x + \lambda_R^z s_x \right) c_j,$$

$$\lambda_{R}^{x} = -\frac{\xi_{p} E_{sz}^{ij} \left[\xi_{sp}^{x}(i) + \xi_{sp}^{x}(j) \right]}{\left(\epsilon_{2p}^{\pi} - \epsilon_{s} \right) \left(\epsilon_{2p}^{\pi} - \epsilon_{2p}^{\sigma} \right)},$$

$$\xi_{E}^{ij} \left[\xi^{y}(i) + \xi^{y}(i) \right]$$

$$\lambda_{R}^{y} = \frac{\xi_{p} E_{sz}^{\sigma} [\xi_{sp}^{\sigma}(i) + \xi_{sp}^{\sigma}(j)]}{\left(\epsilon_{2p}^{\pi} - \epsilon_{s}\right) \left(\epsilon_{2p}^{\pi} - \epsilon_{2p}^{\sigma}\right)},$$

Stark interaction with H-Bond electric field

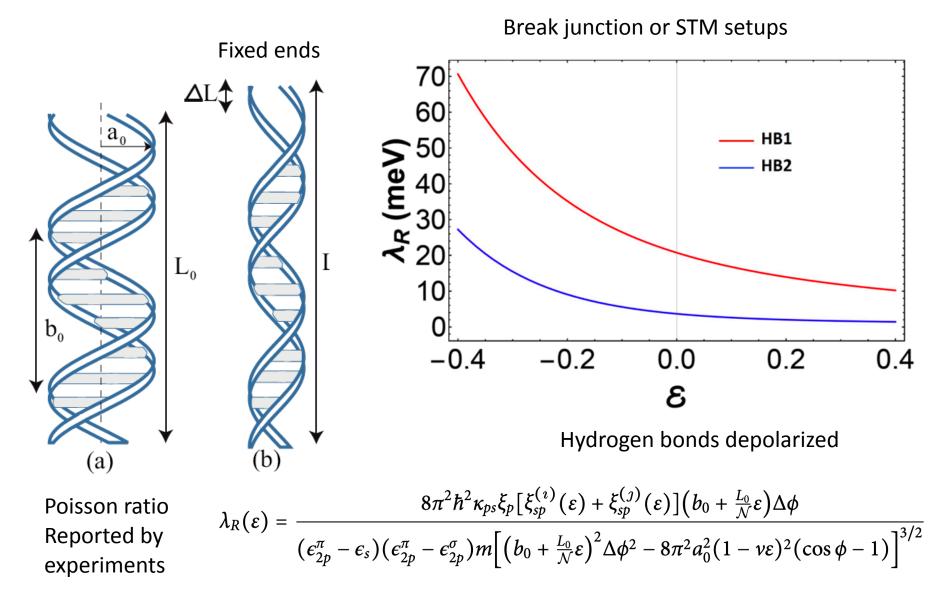


$$\xi_{sp}^{i} = \langle s | H_{s} | p_{i} \rangle = \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{\infty} s^{*} H_{s} p_{i} r^{2} \sin \theta dr d\theta d\varphi$$

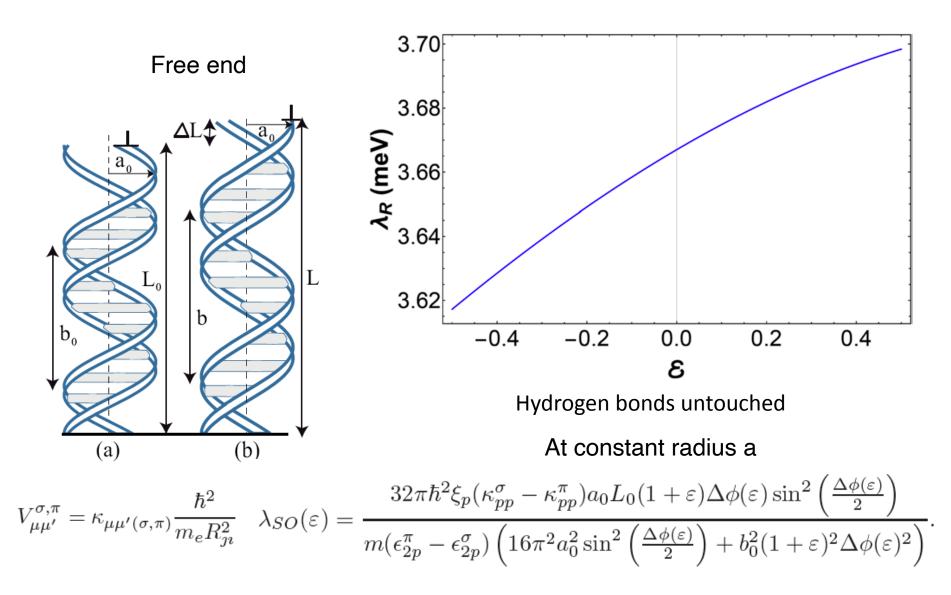
Experimental verification

- How can we prove the previous scenario?
- Perhaps with a new spectroscopy christened:
 - MECHANICAL SPECTROSCOPY

Stretching both ends fixed



One free end stretching



Conclusions

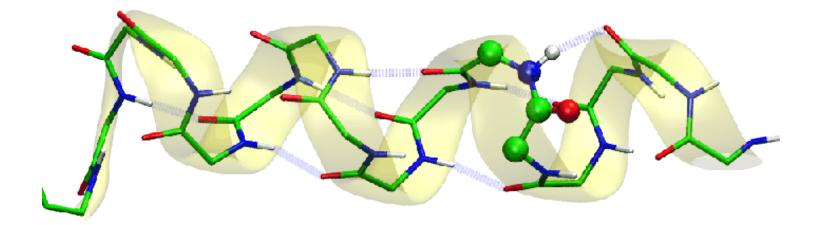
- Analytical TB approaches coupled to Band folding/ Matrix perturbation/ Renormalization tools can capture major qualitative features of new physical phenomena in low dimensional systems
- Proximity effects (non-bonded interactions/Van der Waals materials) are a novel mechanism to inherit and generate new behavior in low dimensional material.
- TB model can capture interferences between interaction paths that render couplings weak or strong.
- Effects of external fields via the Floquet approach and twisting/warping material next in the pipeline!

Collaboration

- Solmar Varela, Yachay Tech
- Floralba López, Yachay tech
- Raul Hidalgo
- Juan Torres
- Vladimiro Mujica, ASU
- Bertrand Berche, Lorraine
- Barbara Montañes, IVIC
- Benoit Guillot, Lorraine

Chiral peptide

Made in Nature®



Hidalgo and Torres current patient

Chiral inside chiral