Instalación de un detector Cherenkov de neutrones.

Jaime Betancourt, Universidad Industrial de Santander.

Asesor: Dennis Cazar, Universidad San Francisco de Quito (Ecuador). Co asesor: Luis Núñez, Universidad Industrial de Santander (Colombia). Co asesor: Christian Sarmiento C., Universidad Industrial de Santander (Colombia). LA-CoNGA Physics

9 de Septiembre de 2022

Latin American alliance for Capacity buildiNG in Advanced physics LA-CONGA physics

Rayos Cósmico y Neutrones

2

Goldhagen, P., J.M. Clem, and J.W. Wilson. (2004). The energy spectrum of cosmic-ray induced neutrons measured on an airplane over a wide range of altitude and latitude. Radiat. Prot. Dosim. 110(1-4): Pages 387–392. doi:10.1093/rpd/nch216.

Rayos Cósmico y Neutrones

En el panel inferior se muestran las huellas de dos neutrones. El neutrón n_1 fue absorbido por el suelo y eliminado del conjunto de neutrones medibles por la sonda de rayos cósmicos sobre la superficie; el neutrón n_2 volvió a la atmósfera y es medible allí. Imagen de fondo - Agencia Espacial Europea (ESA).

Antecedentes (Detección de neutrones: COSMOS: the COsmic-ray Soil Moisture Observing System) 4

M. Zreda et al.: COSMOS: the COsmic-ray Soil Moisture Observing System

Antecedentes (Capacidad de detección de neutrones de los detectores Cherenkov de agua) 5

0			1
G	ro	un	D.

Resultados experimentales de la eficiencia de detección en comparación con las simulaciones						
Volumen sensible	Resultados experimentales (%)	Simulación (%)	Total de capturas (%)			
			¹ H (%)	³⁵ Cl (%)		
Agua pura	19 ± 12	10.18	10.17	0		
Agua + ³⁵ Cl (2.5 %)	44 ± 10	24.19	15.57	7.91		

Agua con un 2,5% de aditivo

Sidelnik, H. Asorey, N. Guarin et al., Neutron detection capabilities of Water Cherenkov Detectors, Nuclear Inst. and Methods in Physics Research, A (2019), https://doi.org/10.1016/j.nima.2019.03.017.

Antecedentes (Simulación de neutrones de 500 MeV mediante el uso de un detector Cherenkov de agua dopado con NaCI)

6

Cherenkov detector, Advances in Space Research, Volume 65(9), Pages 2216-2222. https://doi.org/10.1016/j.asr.2020.02.024

Prueba del PMT mediante un centellador

Revestimiento del tanque

1,2 kg por m^2

8

Área total (m^2)= 10,13 m^2

Dos capas: Área total (m^2)= 20,26 m^2

Necesitamos 5 tarros = 101,96 USD

Soporte mecánico del PMT

Soporte mecánico del PMT

Estado final del sistema

Calibración

Análisis de datos

Análisis de datos (Formato de datos por hora)

Análisis de datos (Algunos cálculos por hora)

ADC vs cuentas

Flujo no corregido

Resultados

Quito, November 18, 2022

SF(

Muchas Gracias

Latin American alliance for Capacity buildiNG in Advanced physics LA-CONGA physics

General

Instalar y calibrar un detector Cherenkov de agua para detección de neutrones en las instalaciones de la Universidad San Francisco de Quito (Ecuador).

Específicos

- 1. Desarrollo de un método de análisis de datos
- 2. Configurar un detector WCD para la detección de neutrones.
- 3. Evaluar la influencia que tiene el NaCl como un aditivo para mejorar la capacidad de detectar neutrones.

Aislamiento de humedad

7

Análisis de datos

7

- 1. Desarrollo de un método de análisis de datos
- 2. Configurar un detector WCD para la detección de neutrones.
- 3. Evaluar la influencia que tiene el NaCl como un aditivo para mejorar la capacidad de detectar neutrones.