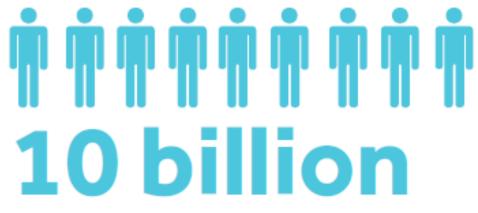
Innovaciones en la producción de hortalizas para alimentar el futuro

Víctor H. Escalona CEPOC - Universidad de Chile vescalona@uchile.cl

PRODUCCIÓN DE HORTALIZAS
APLICACIÓN DE TRATAMIENTOS
LUMÍNICOS

EFECTOS DEL ESPECTRO PAR


MICROGREENS

OTRAS PROYECCIONES

ANTECEDENTES SITUACIÓN MUNDIAL Demográfico

POPULATION
GROWTH =
HIGHER DEMAND
FOR FOOD

world population in 2050

More food to be produced by farmers

URBANIZATION
DRIVES CHANGE IN
CONSUMPTION
PATTERN

36.4 kg

processed food and meat annual per capita meat consumption 1997-1999

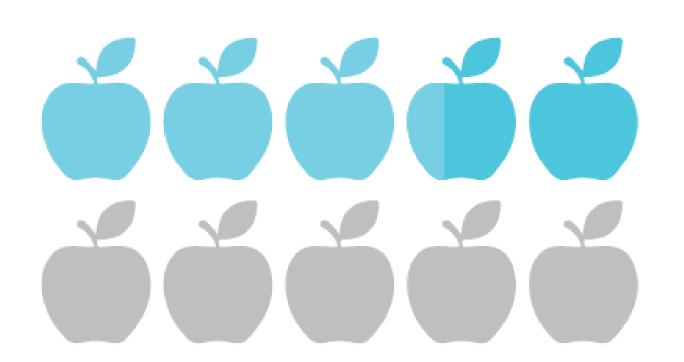
processed food and meat annual per capita meat consumption 2030

ECONOMÍA | PANAMÁ

El cambio climático pone en jaque ruta del Canal de Panamá

Andrea Ariet 22/08/2023

Los expertos señalan que las restricciones al tránsito por esta vía marítima a causa de la falta de precipitaciones podrían alterar las cadenas de suministro a nivel mundial.

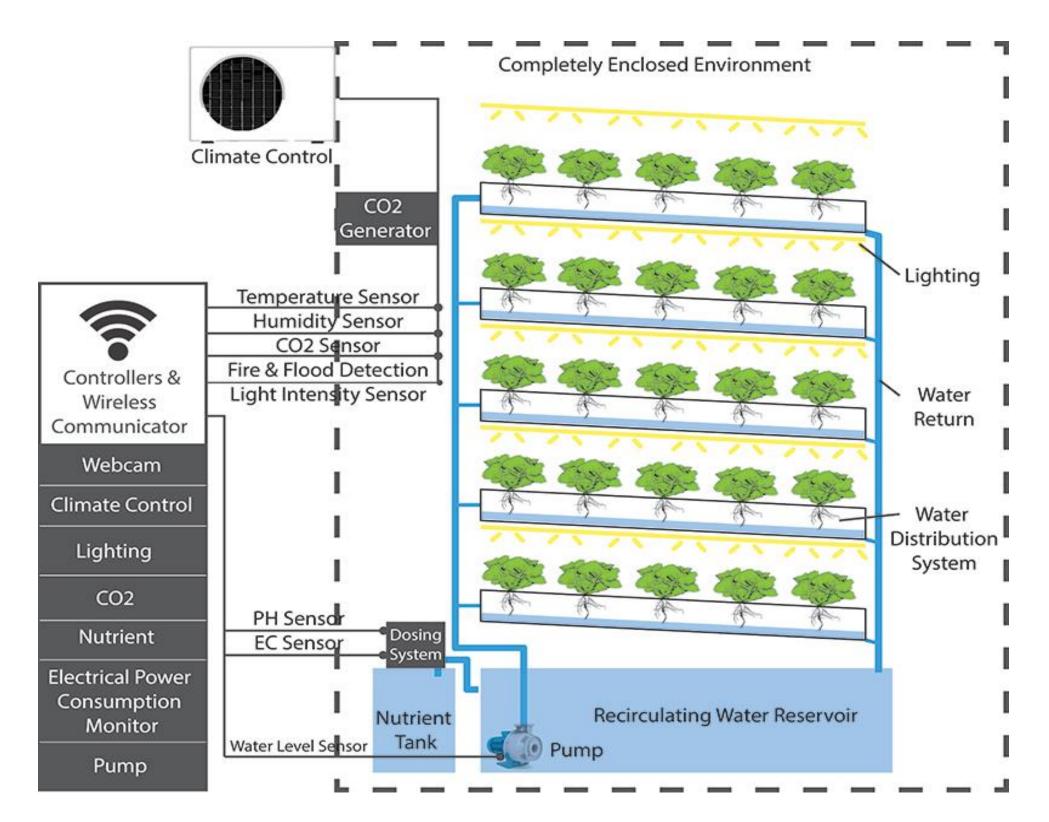

El Canal de Panamá opera con agua dulce, por lo que está sujeto a los cambios en las precipitaciones y a los niveles de embalses cercanos como como el lago Gatún.

Fecha: 22/08/2023

https://www.dw.com/es/el-cambio-clim%C3%A1tico-pone-en-jaque-ruta-del-canal-de-panam%C3%A1/a-66603003


Pérdida de agua

between


33%-50%

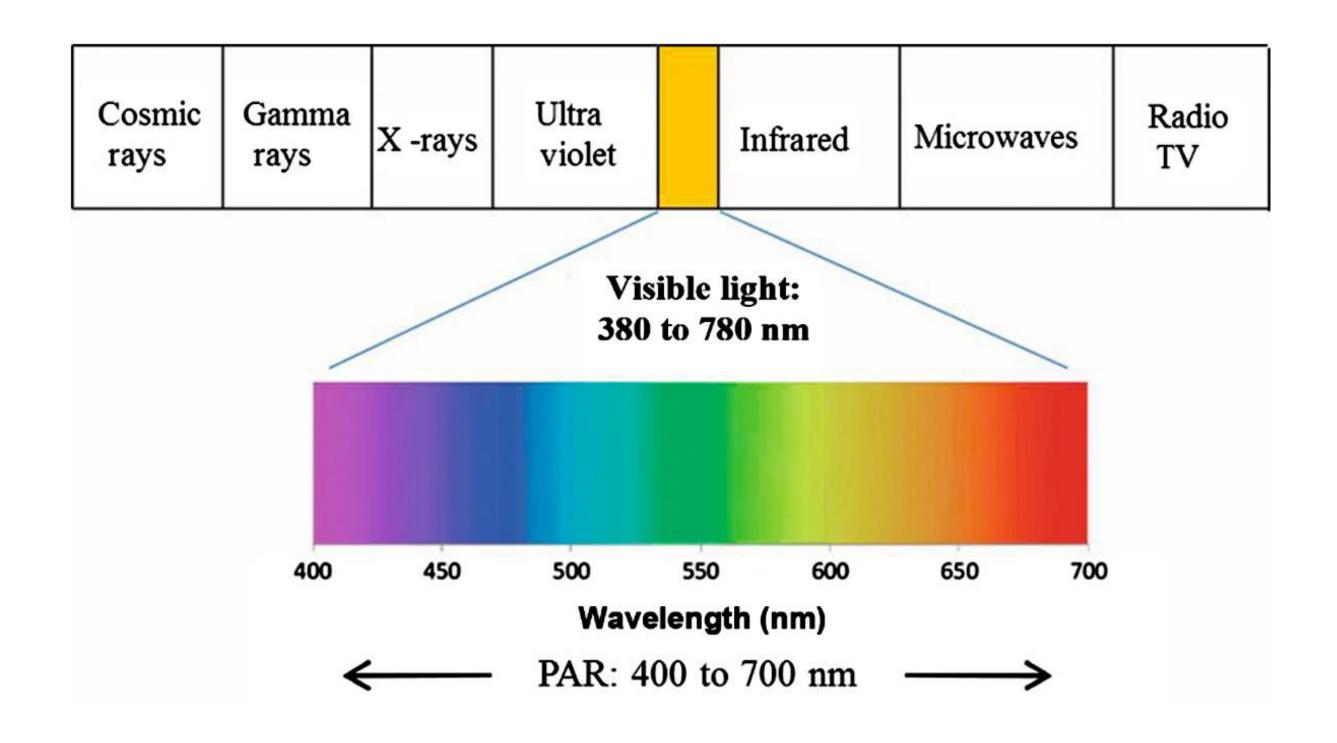
of all food produced globally is never eaten

largest emitter of greenhouse gases after **China** and the **US**, if food waste were a country

Esquema de producción y capacitación

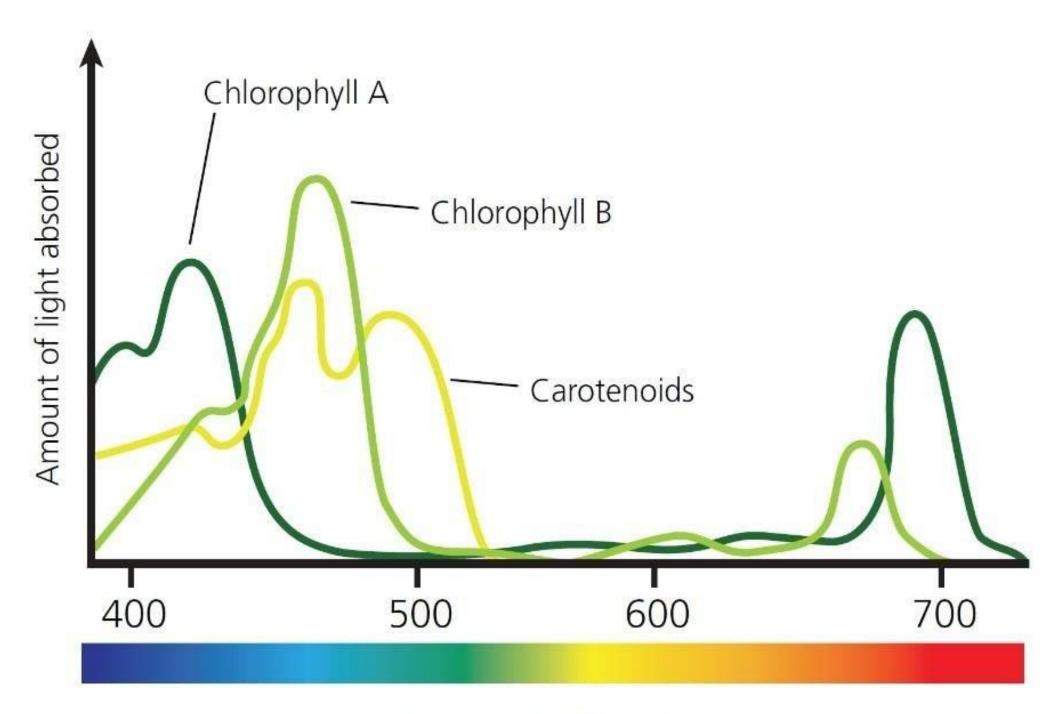
Puede usarse como una sala de capacitación móvil, ofreciendo a los agricultores, empresarios, estudiantes y la comunidad, la oportunidad de aprender sobre el cultivo controlado.

Agricultura	Invernaderos de	Contenedor
convencional	temperatura	
	controlada	
Ciclos: 1-2 (4)	6	8- 10
Producción anual: Estacional	Depende del clima	Si
Garantía de producción: No	No	Si
1 ha: 20 Tons *USA Lettuce	420 Tons*North Carolina State University	3000 ton
Eficiencia en el uso de agua (anual): 270,000 Gallons / Acre*University of Arizona	321,200 Gallons (2,200sf greenhouse) *University of Arizona	27,000 Gallons
Uso de fertilizantes / Acre: 90lb N - 175lb P - 100lb K	75% less	80% less
Sabor: Altamente variable	Variación estacional	Consistente
Distribución: compleja e ineficiente	Simple cerca del consumidor	Simple cerca del consumidor

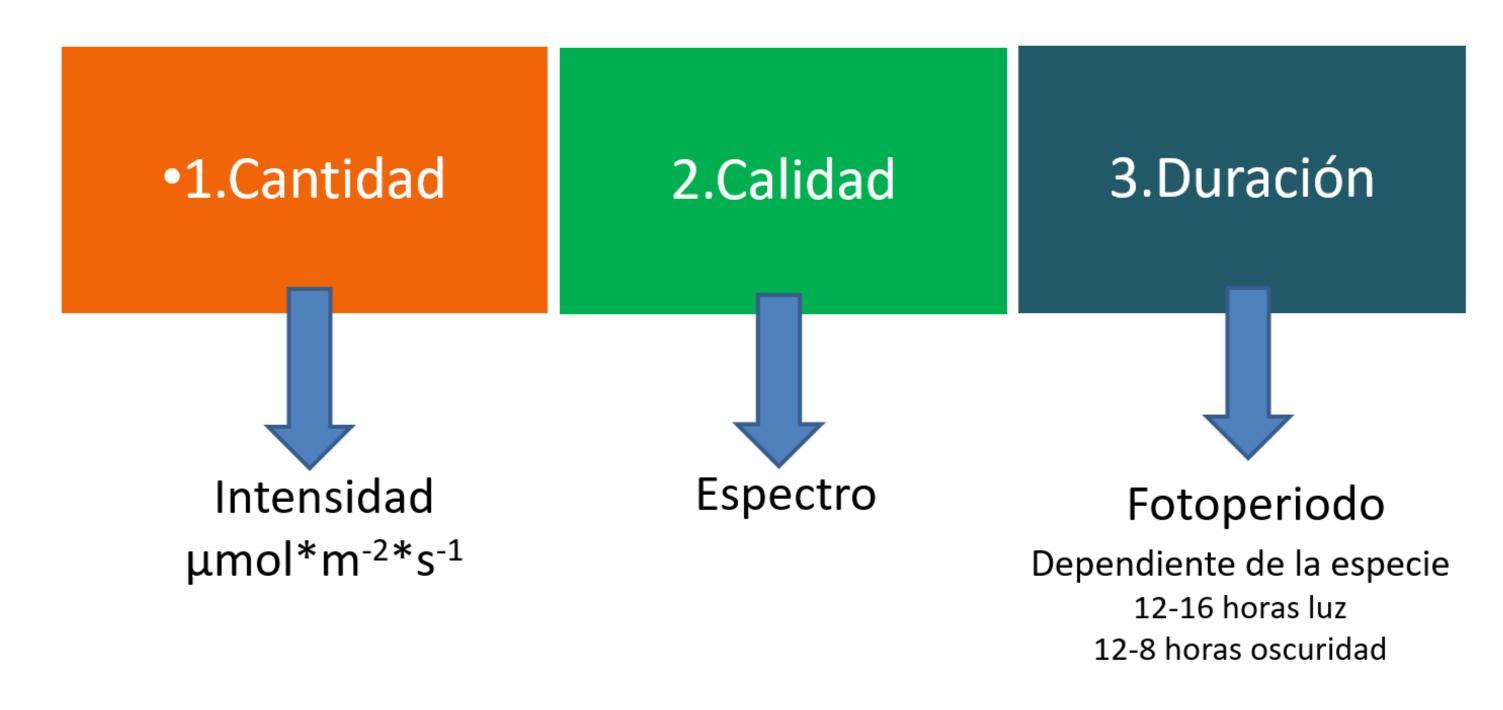


Aplicación de tratamientos lumínicos en hidroponía

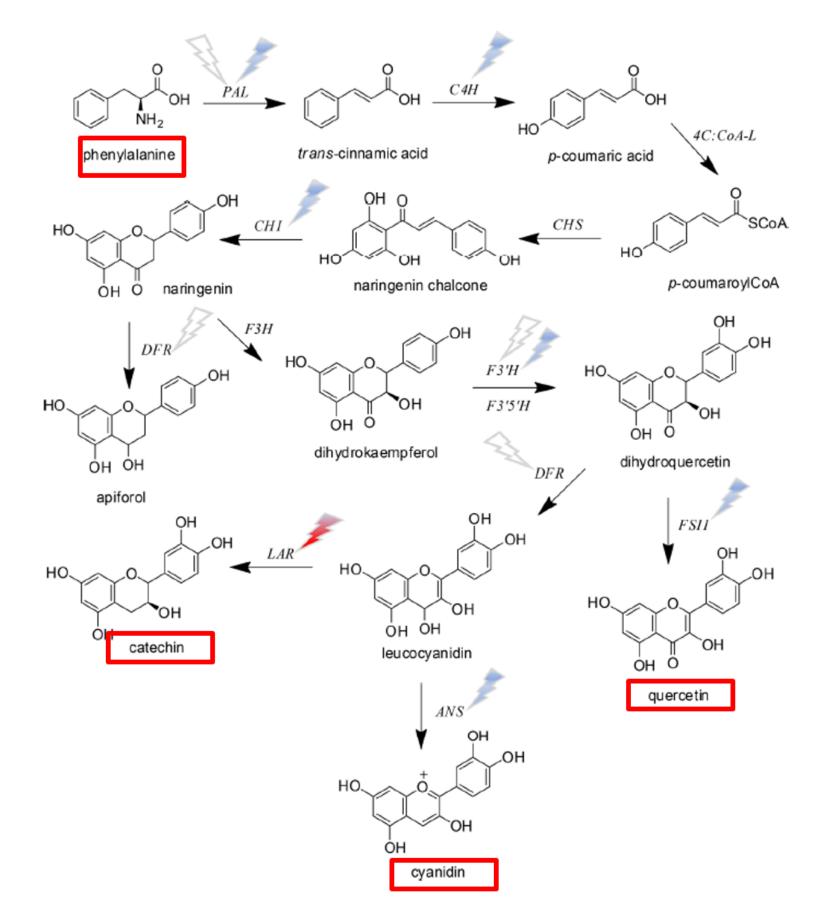
Espectro electromagnético



Espectro RFA

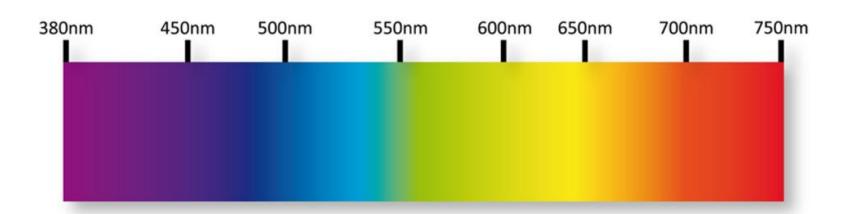

Pigmentos

Wavelength of light (nm)


Componentes de la luz

Efecto del tipo de espectro luminoso en las plantas

Fotones	Fotones	Fotones	Fotones
azules	verde- amarillos	naranja-rojos	rojo lejano
(400-499 nm)	(500-599 nm)	(600-700 nm)	(701- 800 nm)
 ✓ Crecimiento denso ✓ Sanidad y apariencia ✓ Producción de clorofila y el intercambio gaseoso 	 ✓ Menor cantidad de crecimiento por fotón ✓ Penetración para el crecimiento de la subcanopia ✓ Apariencia 	crecimiento ✓ Mejor absorción de la	de la planta ✓Intercambio de la eficiencia fotosintética de otras longitudes de

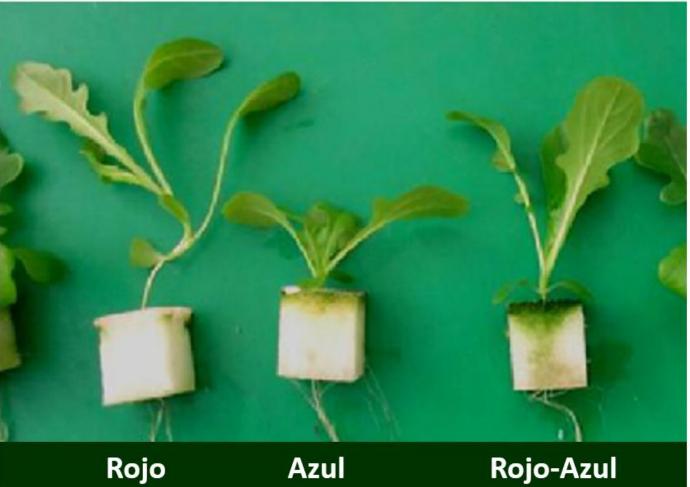


Efectos de las luces Blancas, Azules y rojas en la actividad de enzimas de la ruta de los fenilpropanoides.

Colored figures (lightening bolts) represent the LED light treatment imparted by W, R, and B lights and the corresponding synthesis of the listed antioxidant compounds. All enzymes with a colored figure were upregulated by the LED lights. PAL, phenylalanine ammonia-lyase; C4H, cinnamate-4-hydroxlase; 4C:CoA-L, 4-F3 F3'5 coumaroyl:CoA-ligase; CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone-3-hydroxlase; 'H, flavanoid-3-hydroxlase; 'H,3'5' flavanoid--hydroxlase; FSII, flavone synthase II; DFR, dihydroflavonol 4-reductase; ANS, anthocyanidin synthase; and LAR, leucocyanidin.45 reductase.

Propiedades e importancia de la longitud de onda de la luz

Clasificación	Long de onda (nm)	Importancia	
UV-C	100-280	Disinfección	
UV-B	280-320	Fotomorfogénesis (quemaduras solares, inhibición del alargamiento del tallo), producción de metabolitos secundarios de la planta, desórdenes y daños fisiológicos	
UV-A	320-380	Fotomorfogénesis, metabolitos secundarios, fotorreactivación	
Visible	380-780	Fotosíntesis, fotomorfogénesis (germinación de semillas,	
Fotosintéticamente activa	400-700	eliminación de plántulas, respuesta para evitar la sombra, oscilación circadiana, hipocótilo y fototropismo de raíces,	
Fisiológicamente activa	300-800	respuesta de reproducción) y producción de metabolitos secundarios de plantas	
Rojo lejano	<u> </u>	Fotomorfogénesis (germinación de semillas, etiolación plántulas, respuesta para evitar la sombra), fotosíntes (excitación del fotosistema I)	
Infrarojo cercano	780 - 2500	Calor	
Infrarojo	> 25000	Calor	



RESPUESTA MORFOGÉNETICA

Roja

Chen et al., 2014

PAR: Suplementación LED en plantas de lechuga baby verde

http://www.agronomia.uchile.cl/

Peso fresco y seco (%) de lechugas baby (cv. Levistro) tratadas durante 14 d.

Tue et les elet e 1	Dalasiás.	PAR ²	PAR ² Peso Pe		Númer	o hojas
Treatmento ¹	Relación	fresco			planta ⁻¹	
A:V:R:RL	– R:A	μmol m ⁻² s ⁻¹	g planta ⁻¹	% planta⁻¹	Extendida	Total
60:16:16:8	0.3:1	364 ± 22	17.04 ns	6.86 ns	6.6 ns	11.0 ns
28:42:22:8	0.8.1	339 ± 50	18.27	7.00	6.9	10.6
31:20:40:9	<u>1.3:1</u>	356 ± 24	18.53	7.18	7.1	10.9
15:20:57:8	3.8:1	353 ± 34	19.43	6.95	7.2	11.0
N26:30:30:14 ³	<u>1.2:1</u>	747 ± 218	19.03	7.15	7.9	10.7

¹Values correspond to the percentage of blue, green, red and far-red components, respectively, of the incident light on the plants.

ns: not significant

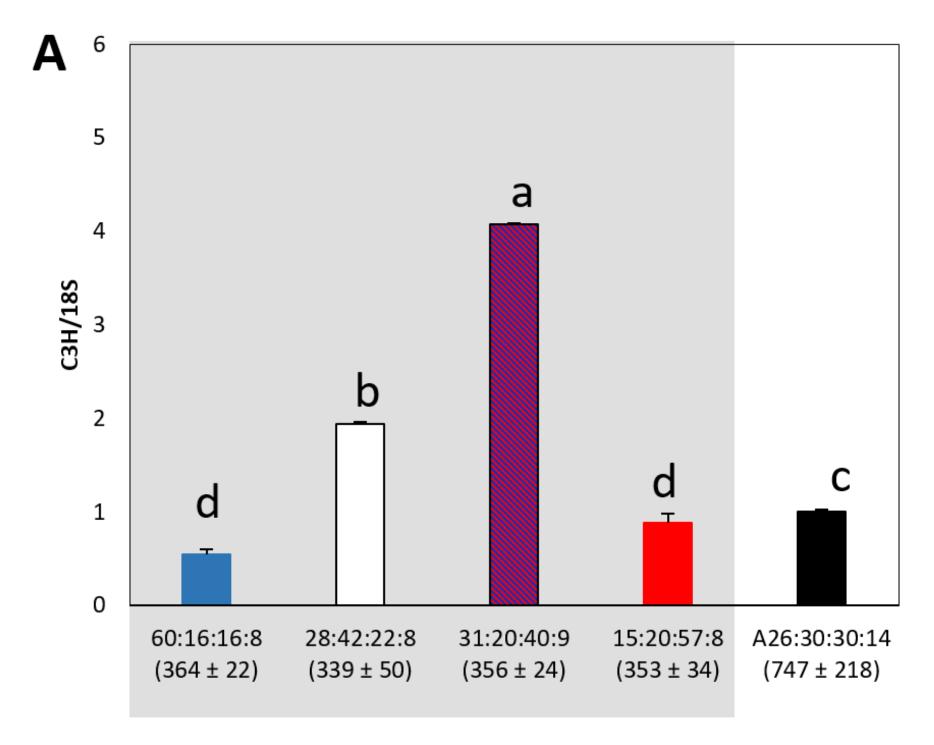
²Photosynthetically active radiation.

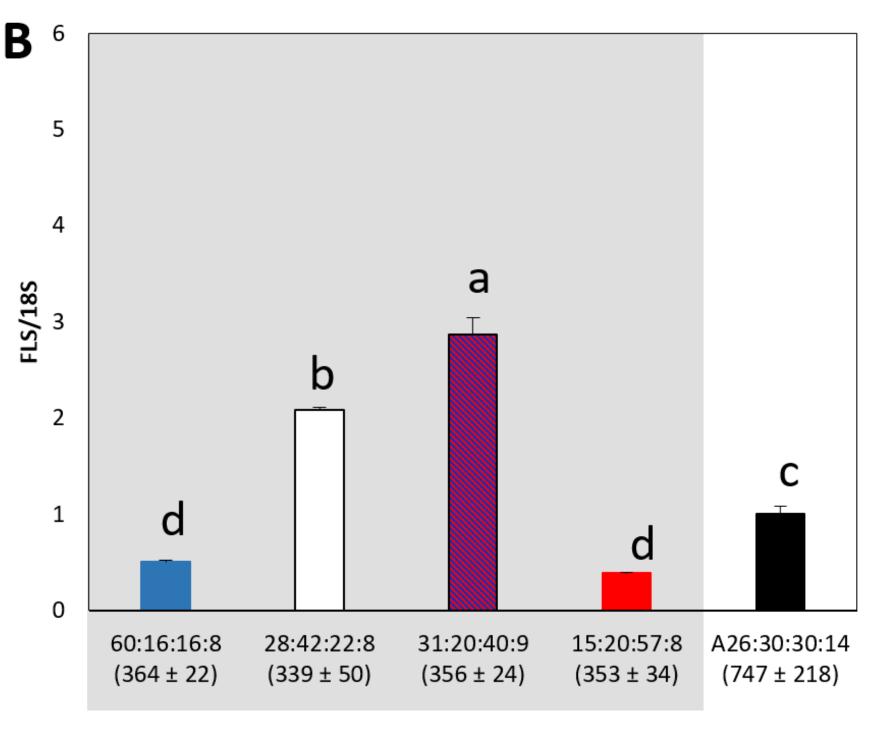
³N26:30:30:14= natural light (control).

Concentración de compuestos fenólicos identificados en lechugas baby 'Levistro' tratadas durante 14 días.

			Ác.	Ác.	Quercetina
Treatmento ¹	Relación	PAR ²	clorogénico	chicórico	total
A:V:R:RL	R:A	$\mu mol~m^{-2}~s^{-1}$		mg g ⁻¹ PS	
60:16:16:8	0.3:1	364 ± 22	4.5 ab	4.3 ns	3.6 b
28:42:22:8	9 0.8:1	339 ± 50	4.2 b	4.6	8.9 a
31:20:40:9	1.3:1	356 ± 24	5.2 a	4.8	7.9 a
15:20:57:8	3.8:1	353 ± 34	3.9 bc	5.0	3.4 b
N26:30:30:14 ³	<u>1.2:1</u>	747 ± 218	3.8 c	4.7	3.7 b

¹Values correspond to the percentage of blue, green, red and far-red components, respectively, of the incident light on the plants.

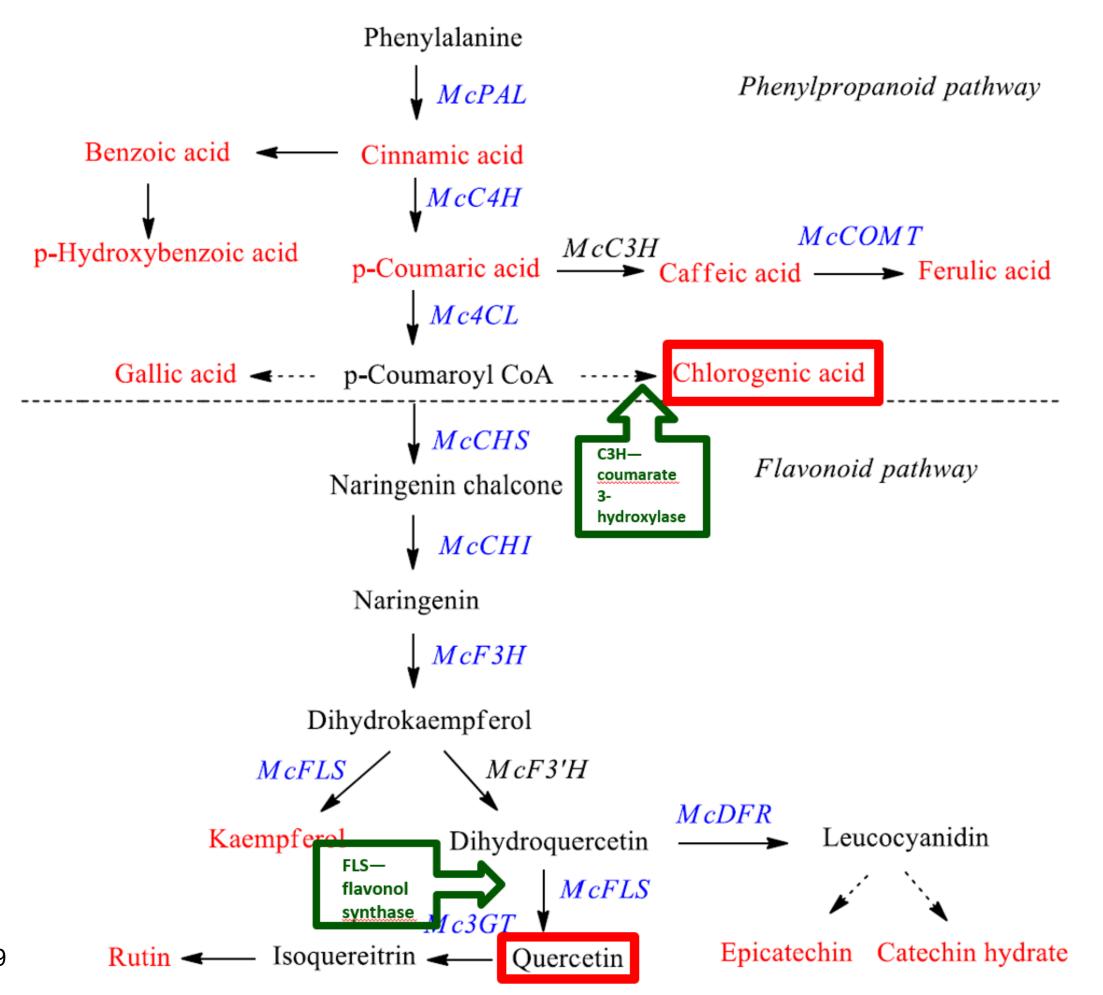

ns: not significant



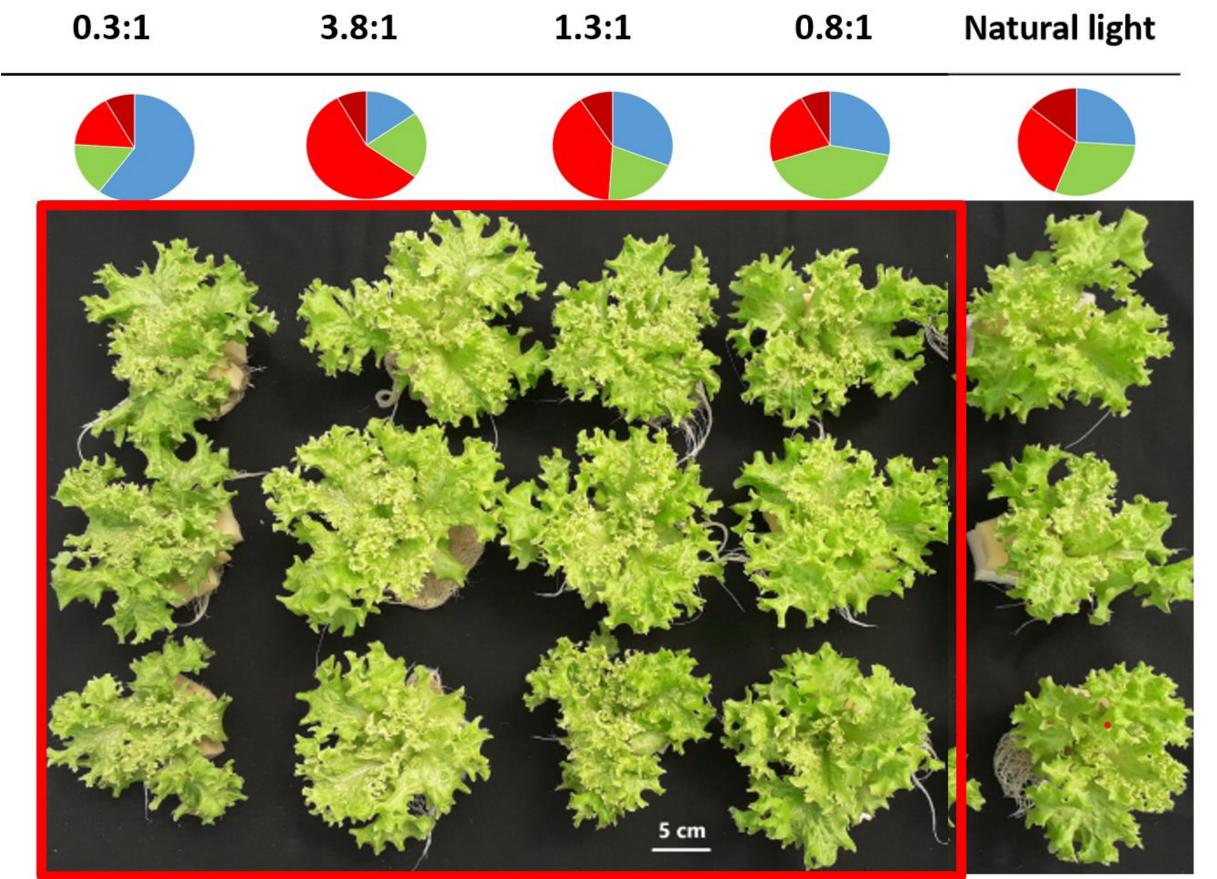
²Photosynthetically active radiation.

³N26:30:30:14= natural light (control).

Expresión relativa de genes de cumarato 3-hidroxilasa (C3H) (A) y flavonol sintasa (FLS) (B) de lechuga baby 'Levistro'.


Treatments

Treatments



Efectos de las luces Blancas, Azules y Rojas en la actividad de enzimas de la ruta de los fenilpropanoides.

Colored figures (lightening bolts) represent the LED light treatment imparted by W, R, and B lights and the corresponding synthesis of the listed antioxidant compounds. All enzymes with a colored figure were upregulated by the LED lights. PAL, phenylalanine ammonia-lyase; C4H, cinnamate-4-hydroxlase; 4C:CoA-L, 4-F3 F3'5 coumaroyl:CoA-ligase; CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone-3-hydroxlase; 'H, flavanoid-3-hydroxlase; 'H,3'5' flavanoid- -hydroxlase; FSII, flavone synthase II; DFR, dihydroflavonol 4-reductase; ANS, anthocyanidin synthase; and LAR, leucocyanidin.45 reductase.

Apariencia visual de lechugas baby

Indoor.

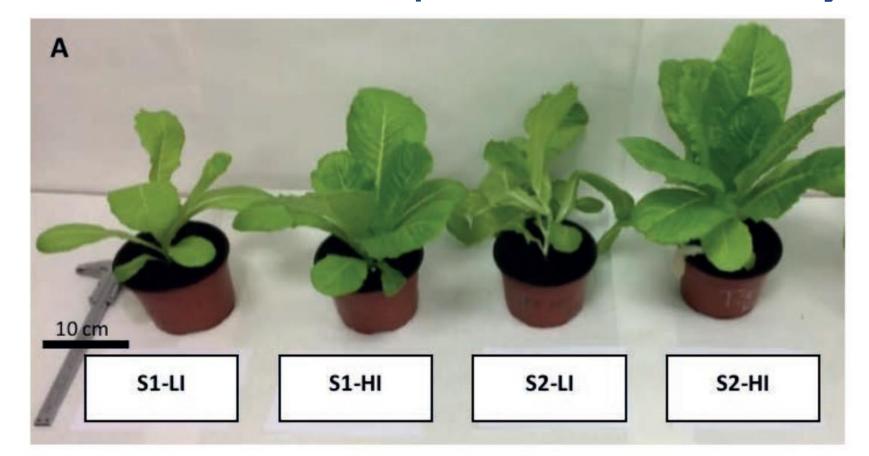
Luces LED de alta intensidad y enriquecidas en rojo aumentaron el crecimiento de la lechuga y endivia

Italian Journal of Agronomy 2022; volume 17:1915

High intensity and red enriched LED lights increased the growth of lettuce and endive

Monica Flores, Miguel Urrestarazu, Asuncion Amorós, Victor Escalona 1,4

Flores et al., 2021


LED light setting.

E1: White light; E2: AP67L.

Forma y tamaño de lechuga creciendo bajo dos espectros e intensidades de LED.

S1, Espectro 1 (Luz blanca); S2, espectro 2 (AP67L); LI, Baja intensidad; HI, Alta intensidad

Composiciones espectrales e intensidades de luz sobre parámetros de crecimiento de lechuga.

		PF	(g)	P:	S %	í l' coan	AF
	Nivel	Hoja	Raíz	Hoja	Raíz	Índice SPAD	(cm²·plant ⁻¹)
Espectro	S1	12.72 b	1.45 b	5.15 a	7.89 b	20.77 a	865.96 b
(S)	S2	23.68 a	2.94 a	5.41 a	8.67 a	21.03 a	1410.06 a
Intensidad	LI	11.01 b	1.24 b	5.04 a	8.40 a	18.88 b	755.23 b
(1)	ні	25.01 a	3.14 a	5.52 a	8.16 b	22.91 a	1520.79 a

Composiciones espectrales e intensidades de luz sobre el contenido total de fenoles, contenido de flavonoides y actividad antioxidante en lechuga

	Nivel	Fenoles	Flavonoides	DPPH	FRAP
		mg GAE·100g ⁻¹ FW	mg RutEq·100g ⁻¹ FW	mg Trolox·100g ⁻¹ FW	mg Trolox·100g ⁻¹ FW
Espectro	S1	147.54 ns	381.10 ns	662.52 b	411.06 ns
(S)	S2	164.75	434.00	976.14 a	447.07
Intensidad	LI	140.18 b	335.09 b	597.52 b	357.24 b
(1)	HI	172.11 a	480.00 a	1041.14 a	500.89 a

Luces LED de alta intensidad y enriquecidas en rojo aumentaron el crecimiento de la lechuga

Conclusiones

- ✓El espectro de luz con una mayor proporción de rojo y rojo lejano (S2) elevó los pesos fresco y seco en comparación con la luz blanca (S1).
- ✓ Los espectros no modificaron los contenidos de antioxidantes.
- ✓ Ambos espectros incrementaron los parámetros de crecimiento y TPC en la intensidad más alta (100 µmol·m⁻²s⁻¹).
- ✓ Los niveles de S2 y HI podrían considerarse óptimos.

ÍNDICE:

PRODUCCIÓN DE HORTALIZAS

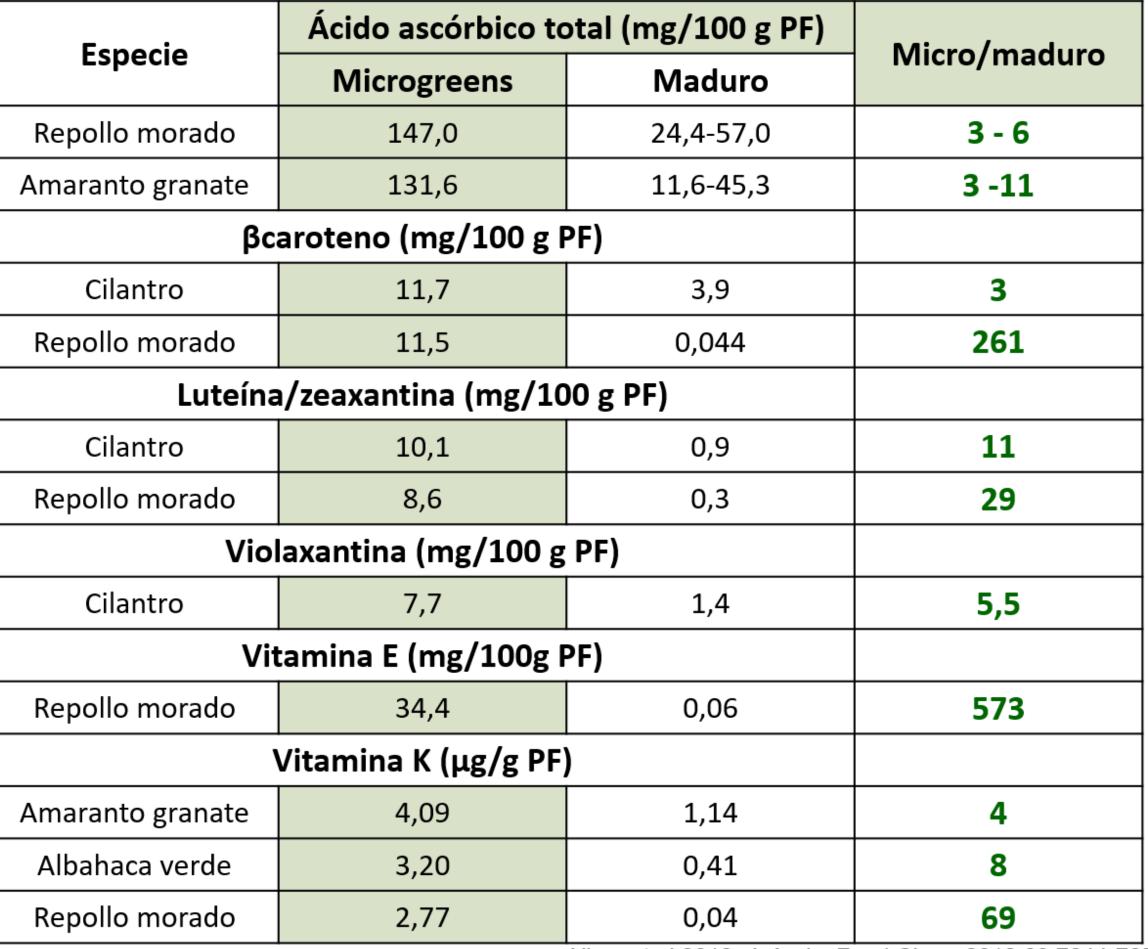
APLICACIÓN DE TRATAMIENTOS LUMÍNICOS

EFECTOS DEL ESPECTRO PAR

MICROGREENS

OTRAS PROYECCIONES

Microgreens. Especies

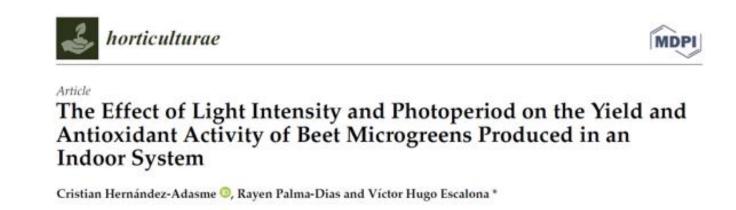


Xiao, et al 2012. J. Agric. Food Chem.2012.60,7644-7651

Cultivo

Cultivo en campo o invernadero y en cámaras de crecimiento bajo luz artificial.

Cámara crecimiento indoor con iluminación LED CEPOC UChile


Cultivo de microgreens en invernadero vs condiciones interiores

Especies	Método	Días	Temp (°C)	HR (%)	Intensidad luminosa µmol*m ⁻² *s ⁻¹	Fotoperiodo Luz / oscuridad
Kale	Invernadero	19	14-22*	42-74*	280-1060*	
verde	Indoor	13	19-25	80-90	160	16/8
Vala vaia	Invernadero	19	14-22*	42-74*	280-1060*	
Kale rojo	Indoor	13	19-25	80-90	160	16/8
Repollo	Invernadero	19	14-22*	42-74*	280-1060*	
verde	Indoor	19	19-25	80-90	160	16/8
Repollo	Invernadero	19	14-22*	42-74*	280-1060*	
rojo	Indoor	19	19-25	80-90	160	16/8
Mostaza	Invernadero	13	14-22*	54-74*	280-1060*	
verde	Indoor	13	19-25	80-90	160	16/8
Mostaza	Invernadero	19	14-22*	42-74*	280-1060*	
roja	Indoor	19	19-25	80-90	160	16/8

Data from www.agrometeorologia.cl (March 21th, 202)

Efecto de la intensidad de la luz y el fotoperíodo sobre el rendimiento y la actividad antioxidante de microgreens de betarraga producidos en sistemas indoor

- ✓ Espectro: 23% azul, 75% rojo, 2% rojo lejano
- ✓ Intensidades:
 - ✓ Baja (120 \pm 2 µmol m⁻² s⁻¹)
 - ✓ Media (160 \pm 2.5 μ mol m⁻² s⁻¹)
 - ✓ Alta (220 \pm 2.8 μ mol m⁻² s⁻¹)
- ✓ Fotoperiodos: 12 y 16 h

Características agronómicas de microgreenss de betarraga bajo los tratamientos de luz

				Área	
	Rend	Peso seco	Altura	contiledón	Color
Factor	g m ⁻²	%	cm	cm ²	L*
Intensidad (I)	*	ns ¹	ns	ns	*
Bajo (L)	459.74 a²	8.00	3.98	0.52	37.17a
Media (M)	460.50 a	8.94	3.84	0.51	33.76 ab
Alta (H)	358.41 b	8.96	3.67	0.49	30.21 b
Fotoperiodo (P)	*	*	*	ns	ns
12	482.73 a	6.71 b	4.33 a	0.53	36.54
16	369.70 b	10.55 a	3.33 b	0.49	30.88
Interacción (IxP)	ns	ns	ns	ns	ns

Fenoles totales, capacidad antioxidante y betalainas totales en microgreens de betarraba bajo tratamientos de luz.

	Total fenoles	Total betalainas	Betacianinas	Betaxantinas	FRAP	DPPH
Factor	mg GAE g ⁻¹ FW	g g ⁻¹ FW	g g ⁻¹ FW	g g ⁻¹ FW	mg TE g ⁻¹ FW	%
Intensidad (I)	ns ¹	*	*	ns	ns	ns
Baja (L)	10.16	0.53 a ²	0.12 a	0.41	35.07	35.13
Media (M)	11.27	0.50 ab	0.11 ab	0.39	38.58	34.05
Alta (H)	11.80	0.34 b	0.08 b	0.27	39.96	36.94
Fotoperiodo (P)	*	*	*	*	*	ns
12	8.99 b	0.31 b	0.07 b	0.24 b	32.37 b	37.13
16	13.16 a	0.61 a	0.13 a	0.48 a	43.37 a	33.61
Interacción (IxP)	ns	ns	ns	ns	ns	ns

Eficiencia en el uso de energía (EUE) y agua (WUE) durante el cultivo de microgreens de betarraga bajo tratamientos de luz.

	EUE	WUE
Factor	g FW kW ⁻¹ m ⁻²	g FW L ⁻¹ m ⁻²
Intensidad (I)	ns ¹	*
Baja (L)	4.56	33.56 a ²
Media (M)	4.56	33.59 a
Alta (H)	4.04	29.72 b
Fotoperiodo (P)	*	*
12	4.97	36.60 a
16	3.80	28.00 b
Interacción (IxP)	ns	ns

Conclusiones

- ✓ LED mejora microgreens de betarraga roja bajo intensidades bajas y medias y fotoperiodos cortos de 12 h de luz.
- ✓ La menor exposición a la luz hace el cultivo más eficiente en el uso de energía y agua.
- ✓ Fotoperíodos más largos de 16 h de luz afectan positivamente a los compuestos antioxidantes.

ÍNDICE:

PRODUCCIÓN DE HORTALIZAS

APLICACIÓN DE TRATAMIENTOS LUMÍNICOS

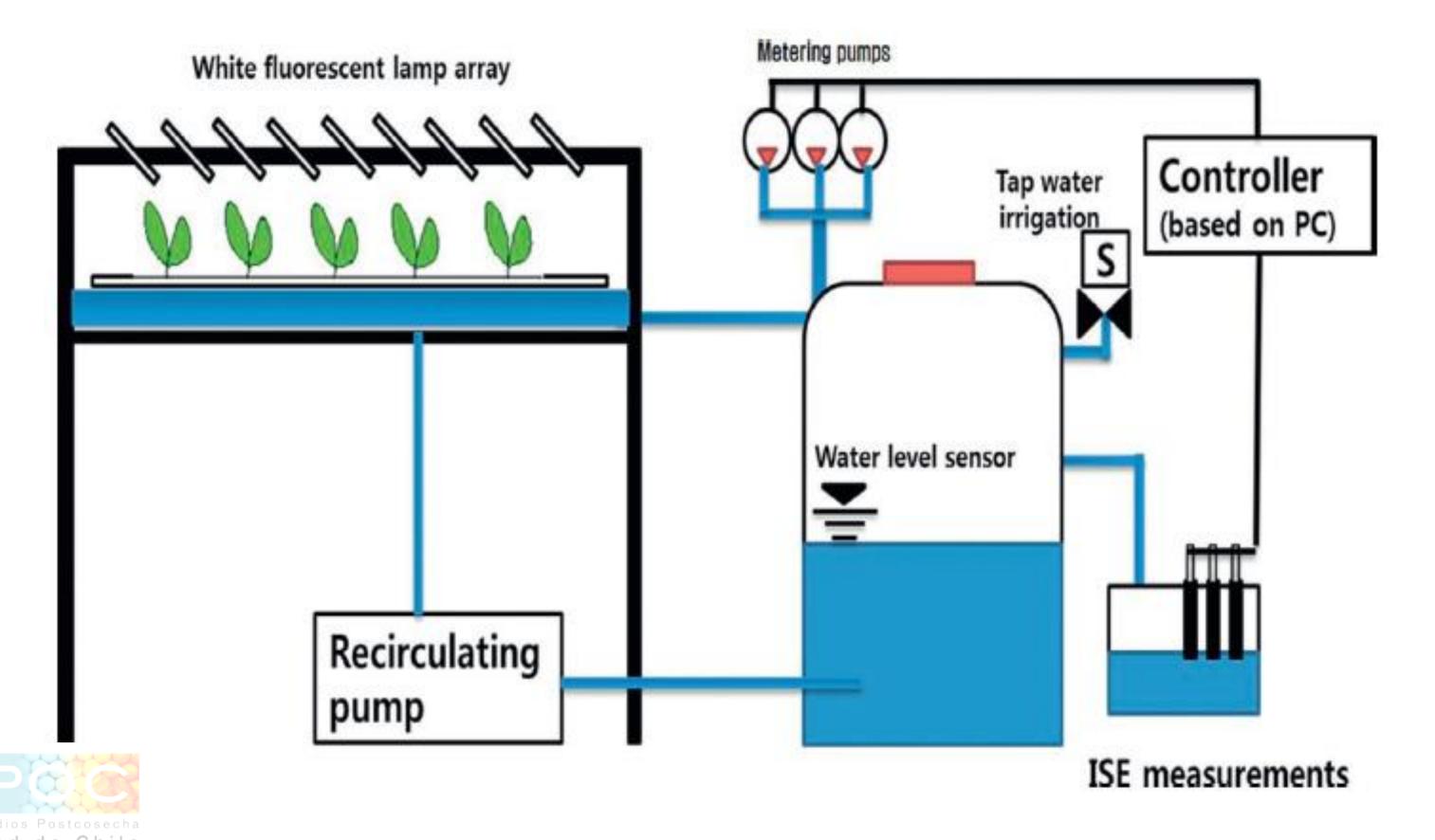
EFECTOS DEL ESPECTRO PAR

MICROGREENS

OTRAS PROYECCIONES

Invernaderos de ambiente controlado

http://www.groentennieuws.nl/artikel/111825/LED-belichting-geeft-ons-bedrijf-een-voorsprong


Fábrica de producción de hortalizas (PFAL)

Superficie 338 m², 10 niveles, 9 filas. Lechugas de hoja y romanas 3000 unid/d; 1 millón unid/año; 2800 unid/m²/año.

Toyoki Kozai, 2016

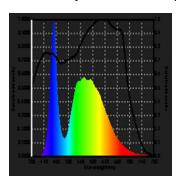
Diagrama de un sistema hidropónico cerrado con control de nutrientes

Chile- FARMTASTICA

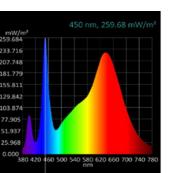
BOXFERA

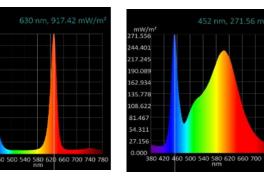
https://boxfera.com/

https://www.agrourbana.ag/


AGROURBANA

CEPOC UCH + Lab Robótica UdeC Sistemas de producción vertical en contenedores (microgreens y lechugas)




Control (Luz blanca)

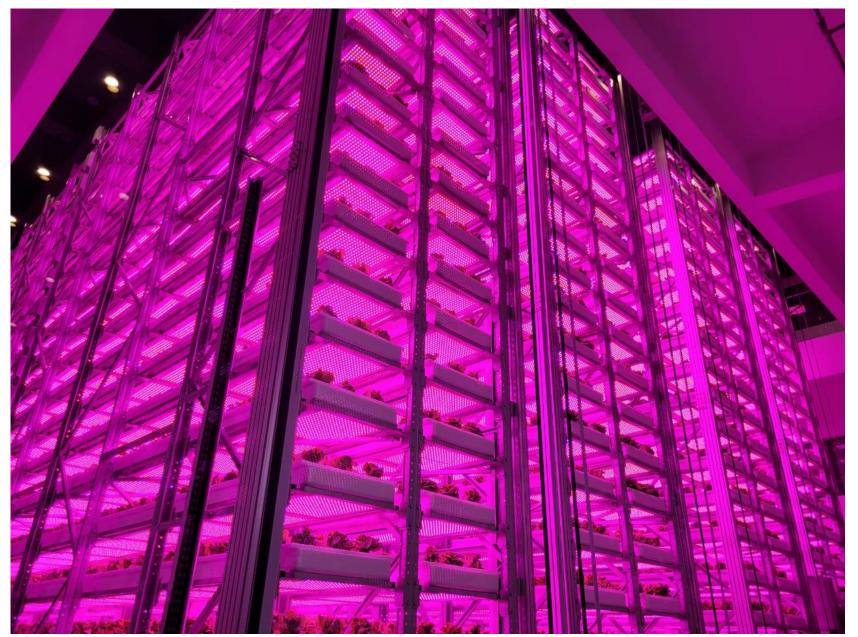
LGL-001

LGL-002

LGL-004

Lechuga verde cv. Bartimer

Lechuga roja cv. Soltero

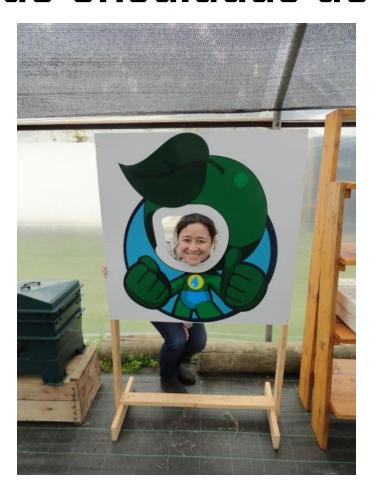


China:

Sistemas de producción vertical en contenedores (hojas, plantines, flores)

Mayo, Chengdú (China) VerticalFarm, 2023

Capacitación



VERDEAGUA (Uruguay): Relación con la comunidad Empresa productora y procesadora de ensaladas de hoja

Supermercado: Producción local

Davis, EE.UU.

Supermercado: Producción local

Pérdidas de alimentos vs hambre en el mundo

www.americaeconomia.com

Pérdidas y desechos

Brasil

tiene más de 207 millones de habitantes que desperdician:

14,6 millones

de toneladas de alimentos anuales

40.000 toneladas acaban en la basura todos los días

19 millones de personas podrían ser alimentadas con esa comida

World Resources Institute (WRI)

Argentina

desperdicia el 12,5% de lo que produce

16 millones

de toneladas de alimentos acaban en la basura

14,5 millones son pérdidas

1,5 millones son desperdicios

40% del total corresponde a productos hortofrutícolas

FAO

Colombia

se desperdicia el 34% de los alimentos destinados al consumo humano

Agradecimientos

- Organizadores Reunión Red Clara
- Fondecyt ANID (Chile)
- REDES ANID (Chile)
- FIC Región de O'Higgins (Chile)
- Equipo CEPOC

iGRACIAS!

Victor Hugo Escalona

CEPOC – Universidad de Chile
vescalona@uchile.cl

