

## FACULTAD DE CIENCIAS ESCUELA DE FÍSICA ESCUELA DE QUIMICA



LABORATORIO DE ESPECTROSCOPIA ATÓMICA Y MOLECULAR UNIVERSIDAD INDUSTRIAL DE SANTANDER

# LASER INDUCED BREAKDOWN SPECTROSCOPY (LIBS) INSTRUMENTACION **Y APLICACIONES**

## LIBS

- Técnica "emergente"
- Láser pulsado de alta potencia
- Remover, fundir, sublimar, excitar e ionizar

## PLASMA



## Algunos tópicos actuales de investigación en LIBS



## Ventajas

- Sólidos, líquidos y gases
- No preparación
- No riesgo de contaminación
- Cantidades pequeñas de muestra
- Análisis espacial
- Acceso remoto

# Ventajas

- Resolución 3D (depth profiling)
- Detección multielemental
- Compatible con otras técnicas
- Simple, económica y compacta
- Quimiometría análisis multivariado y redes neuronales
- No hay estandares
- Efecto matriz

## SISTEMA EXPERIMENTAL



## Montaje Experimental











# Distribución de la Intensidad del Plasma Generado por Láser, a Diferentes Presiones del Gas Ambiente

RIAO – OPTILAS: Campinas – Brasil 2007

Rafael Angel Sarmiento Mercado Enrique Mejía Ospino Rafael Cabanzo Hernández

# INSTRUMENTACIÓN







## RESULTADOS

# 1.- Variación del plasma con la distancia muestra – lente de enfoque



## 2.- Variación de la intensidad del plasma



### 3.- Variación del ancho del plasma



### 4.- Variación del largo del plasma



# 5.- Variación de la intensidad de las líneas Mn(403,076) y Fe(404,582)





H. Estupiñán, D.Y. Peña, R. Cabanzo and E. Mejía-Ospino. AIP Conf. Proc.. 992, 1213-1216 (2008)
H. Estupiñán, D. Y. Peña, Y.O. García, R. Cabanzo and E. Mejía-Ospino. Eur. Phys. J. D. (2009)

$$\overline{I_{\lambda}^{ki}} = Fn_k A_{ki} = FC_s \frac{g_k e^{-\frac{E_k}{k_B T}}}{U_s(T)} A_{ki}$$

$$y = mx + q_s$$

$$y = \ln \frac{\overline{I_{\lambda}^{ki}}}{g_k A_{ki}}$$

$$q_s = \ln \frac{C_s F}{U_s(T)}$$

$$m = -\frac{1}{k_B T}$$

$$x = E_k$$

| Wavelength (nm) | $E_k$ (eV) | $A_{ki}$  | $g_k$ | $\ln \frac{I_{\lambda}}{A_{k},q_{k}}$ |
|-----------------|------------|-----------|-------|---------------------------------------|
| 500.7           | 3.2936     | 49200000  | 7     | -7.1222                               |
| 474.3           | 4.8498     | 53000000  | 9     | -9.3580                               |
| 482.0           | 4.0738     | 14900000  | 7     | -8.0942                               |
| 484.1           | 3.4600     | 17600000  | 5     | -7.0826                               |
| 485.6           | 4.8081     | 52000000  | 15    | -9.1730                               |
| 517.4           | 2.3957     | 3800000   | 5     | -5.5321                               |
| 519.3           | 2.4080     | 3 490 000 | 7     | -5.4206                               |
| 521.0           | 2.4269     | 3570000   | 9     | -5.6181                               |

Table 1. Spectroscopic parameters of neutral Ti (I) transition lines used to determine plasma temperature.



Plot de Boltzmann construida con varias líneas atómicas del titanio

$$\overline{I_{\alpha}^{ki}} \propto k_t N_{\alpha}$$

$$k_t = \frac{e^2 \lambda_0^2}{4\varepsilon_0 m c^2} f_{ik} \frac{g_i e^{-E_{kT}}}{Z(T)} (1 - e^{-(E_k - E_i)_{kT}})$$

$$\frac{I_{Ti}}{I_0} = \frac{k_{t,Ti} N_{Ti}}{k_{t,O} N_0} \qquad \frac{N_{Ti}}{N_0} = \frac{k_{t,O} I_{Ti}}{k_{t,Ti} I_0}$$



LIBS spectrum in the spectral region between 760 to 790 nm

De-convolution of the spectra lines of oxygen emitted at 777.194, 777.417 and 777.539nm

| λ <sub>Ti</sub> /λ <sub>O</sub> | N <sub>Ti</sub> /N <sub>O</sub> |
|---------------------------------|---------------------------------|
| 780.597/777.194                 | 0.55±0.03                       |
| 782.491/777.194                 | 0.53±0.03                       |
| 780.597/777.417                 | 0.56±0.03                       |
| 782.491/777.417                 | 0.57±0.05                       |

## DIFERENCIACIÓN DE TEJIDO CERVICAL NORMAL Y TUMOR MALIGNO

Nelson Acevedo; E. García Ayala; E. Mejía-Ospino; Rafael Cabanzo





Espectros de tejido normal y maligno: Longitud de onda 1064nm, E=100mj/pulso, delay 2 µs, gate 15µs, gain 100; acumula 10 pulso; atm: argón



Área promedio para Ca y N por muestra. Las muestras  $(n_1, n_2, n_3)$ : son de tejido normal y las muestras  $(t_1, t_2, ..., t_9)$ : son compatibles clínicamente con una lesión escamosa intraepitelial de cérvix de alto grado (NIC III).

| Relaciones de intensidad |                                                                                                                                                |                                                                                                                                                                                                                               |  |  |  |  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Relación                 | Tumor                                                                                                                                          | Normal                                                                                                                                                                                                                        |  |  |  |  |
| Ca 373.69/Na744.229      | 0,02753                                                                                                                                        | 0,06785                                                                                                                                                                                                                       |  |  |  |  |
| K 769.896/Na744.229      | 0,03306                                                                                                                                        | 0,03019                                                                                                                                                                                                                       |  |  |  |  |
| Mg 285.213/Na744.229     | 0,00213                                                                                                                                        | 0,00608                                                                                                                                                                                                                       |  |  |  |  |
| N744.229/Na744.229       | 0,16564                                                                                                                                        | 0,30804                                                                                                                                                                                                                       |  |  |  |  |
|                          | Relaciones de         Relación         Ca 373.69/Na744.229         K 769.896/Na744.229         Mg 285.213/Na744.229         N744.229/Na744.229 | Relaciones de intensidad         Relación       Tumor         Ca 373.69/Na744.229       0,02753         K 769.896/Na744.229       0,03306         Mg 285.213/Na744.229       0,00213         N744.229/Na744.229       0,16564 |  |  |  |  |

Intensidades Relativas de algunos elementos respecto al Na.



Relación de las intensidades de las líneas de N/Na para cada muestra.

#### ABLACIÓN LÁSER COMO MÉTODO DE MUESTREO DE FONDOS DE VACÍO DE CRUDOS COLOMBIANOS Y ANÁLISIS POR LA-ICP-AES

A.J. Castillo, R. Cabanzo, E. Mejía-Ospino





Plasma generado por acoplamiento inductivo (ICP).

## Parámetros experimentales

| A. Láser Nd:YAG                                                                                           | Longitud<br>de onda                                                    | Frecuencia | enciaAncho TemporalHz8ns |         | Energía   | Nº de<br>Disparos | Tiempo<br>de Exp. |  |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|------------|--------------------------|---------|-----------|-------------------|-------------------|--|
|                                                                                                           | 532nm                                                                  | 10Hz       |                          |         | 40mJ      | 21                | 2s                |  |
| B. Compuerta control                                                                                      | B. Compuerta controladora de pulsos láser que inciden sobre la muestra |            |                          |         |           |                   |                   |  |
| C. y F. Sistema óptico (c. Lente cuarzo 10 cm distancia focal); (f. Lente cuarzo 20cm de distancia focal) |                                                                        |            |                          |         |           |                   |                   |  |
| D. Cámara de                                                                                              |                                                                        |            | Material Ventanas        |         |           |                   |                   |  |
| Ablación                                                                                                  |                                                                        |            | Zafiro                   |         |           |                   |                   |  |
| E. Plasma ICP                                                                                             | Potencia Flujos Ar:                                                    |            |                          |         |           |                   |                   |  |
|                                                                                                           | 1.2KV                                                                  | N          | Plasma                   |         |           | Argón de Arrastre |                   |  |
|                                                                                                           |                                                                        |            | 12L/min                  |         |           | 0.55L/min         |                   |  |
| G.Espectrómetro                                                                                           | ectrómetro DK480 de CVI Spectral Products                              |            |                          |         |           |                   |                   |  |
| H. Detector CCD                                                                                           | Princeton Instrument RTE/CCD 128/H (1024X128)                          |            |                          |         |           |                   |                   |  |
| I. PC                                                                                                     |                                                                        |            |                          |         |           |                   |                   |  |
| Espectros                                                                                                 | Nº de Espectros Rango Espectra                                         |            |                          | pectral |           |                   |                   |  |
|                                                                                                           |                                                                        | 15         |                          |         | 200-770nm |                   |                   |  |



Control de pulsos láser sobre la muestra



Intensidad la línea 393,37nm del Ca vs. variación del flujo de Ar portador



#### Espectros LA-ICP en la ventana espectral 390nm, frames 2 al 14



Espectro resta ventana 390nm



Curva de calibración de la Línea 279,55nm del magnesio

| Elemento | M1 | M2 | М3 | M4 | M5 |
|----------|----|----|----|----|----|
| С        | х  | х  | х  | х  | х  |
| Mg       | Х  | Х  | Х  | Х  | Х  |
| V        | Х  | Х  | Х  | Х  | Х  |
| Са       | Х  | Х  | Х  | Х  | Х  |
| Sr       |    | Х  |    | Х  | Х  |
| Fe       | Х  | Х  | Х  | Х  | Х  |
| Н        | Х  | Х  | Х  | Х  | Х  |
| 0        | Х  | Х  | Х  | Х  | Х  |
| N        | Х  | Х  | Х  | Х  | Х  |

Elementos presentes en cada muestra