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Dark matter at cosmological background level

I Matter domination just before decoupling

I Dark matter particles may be relativistic at BBN and affect the effective
number of extra neutrinos

I If very light, dark matter particles may affect the effective number of
extra neutrinos at decoupling and at present time



Dark matter influence on CMB anisotropy

Dark matter influences BAO and therefore CMB temperature anisotropy in the
peaks region



Dark matter influence on structure formation
Dark matter also influence structure formation in many ways

I During radiation domination δ growth is logarithmical

I During matter domination δ grows as a power of a(t)

I Depending on the EoS of dark matter and on the mass and interactions
of dark matter particles, over-structures may occur. This gives bounds on
the models.

Figure: The SDSS galaxy map of the universe



Dark matter and galaxy rotation curves
The velocity of stars in circular orbit in the galaxy can be expressed as

v 2
c =

G M(r)

r
, M(r) =

∫ r

0

r ′2 ρm(r ′) dr ′

This also gives bounds on the model

vc −→ ρm −→ model

Figure: Comparison of the NGC 2403 rotation curve determinations from
the literature.



Dark matter models

I WIMPS

I Axions

I f(R) modified gravity

I Mond

I SFDM (include B-E condensates)

In particular, a real non-self-interacting scalar field Bose-Einstein condensate
requires

I An extremely low mass mass ∼ 10−23 eV to explain
the observed amount of structure, the critical mass, the central density
and the rotation curves of galaxies

I A condensation temperature Tc ∼ 108 eV

I A temperature T ∼ 10−27 eV today



The model

Let us consider a complex self interacting scalar field χ with renormalizable
self-interacting potential

v(χ, χ̄) = mχ2
0 |χ|

2/2 + h |χ|4

as dark matter field. The presence of the self-interaction has many important
consequences for the model.

I It allows the formation of a χ particles condensate at early times. The
equilibrium configuration is that of a condensate in equilibrium with a
thermalized gas of χ and χ̄ particles with temperature Tχ

I It gives a thermal correction to mχ
0 .

At sufficiently high temperatures one has mχ
th ∼ Tχ and ρχc ∼ T 4

χ scales
as radiation. This help to solve the cosmological coincidence problem
with less stringent constrains on the parameters

I It changes the spherically symmetric solutions, allowing masses of the
order of 1− 10−3 eV .

This value should be compared with the value 10−23 eV found in the non
interacting case h = 0.



Constrains on the model

To constrain the model one use

I Effective number of extra neutrinos at BBN ∆eff
ν = 0.054+1.4

−1.2

I Effective number of extra neutrinos at CMB ∆eff
ν = 1.30+0.86

−0.88.

This is less stringent than the BBN constrain

I Dark Matter Halos of a size of about 100Kpc



Formalism

I Take L = 1
2
∂µχ∂

µχ− 1
2
mχ

0 |χ|
2 − h |χ|4.

I Take h� 1 and consider interactions as perturbations

I Define the number densities of particles and anti-particles in terms of the
phase space distributions fχ and fχ̄ as

nχ =

∫
d3p

(2π)3
fχ(p), nχ̄ =

∫
d3p

(2π)3
fχ̄(p)

I The energy density and the charge density of the complex χ field are

ρχ =

∫
d3p

(2π)3
Eχ(p) [fχ(p) + fχ̄(p)] , Qχ =

∫
d3p

(2π)3
[fχ(p)− fχ̄(p)]



The equilibrium configuration with the condensate

The equilibrium configuration is

fχ(p) = f BE
χ (p) + (2π)3 Qc δ

3(p), fχ̄(p) = f BE
χ̄ (p)

where

I f BE
χ (p) = 1

[eβ (E−µ)−1]
, is the Boltzmann distribution of χ particles

I f BE
χ̄ (p) = 1

[eβ (E+µ)−1]
is the Boltzmann distribution of χ anti-particles

I µ is the chemical potential.

I Qc is the density number of the χ particles of the condensate.



Thermal corrections to the scalar field mass

At very high temperatures one expect the thermal corrections to mχ
0 to be

dominant and mχ
0 to be negligible, so

(mχ
th)2 ' 4h

∫
d3p

(2π)3 2E
(fχ(p) + fχ̄(p)) '

(
2hQc +

1

3
hT 3

χ

)
/mχ

th

Therefore, at high temperatures one has

mχ
th ' α · Tχ with α ≡

[
h
(

2 Qc
T 3
χ

+ 1
3

)]1/3

In conclusion the χ mass will be given by

mχ ' mχ
0 for Tχ ≤

m
χ
0
α
≡ Tχ

1

mχ ' mχ
th(Qc ,Tχ, h) for Tχ �

m
χ
0
α
≡ Tχ

1



I The total χ number density is nχ ' Qc + nχth

where nχth ≡
∫

d3p
(2π)3 f

BE
χ (p) is the number density of thermaized χ

I The number density of χ̄ is nχ̄ = nχ̄th ≡
∫

d3p
(2π)3 f

BE
χ̄ (p)

I The energy density is

ρχ ' mχQc + ρχth

where ρχth =
∫

d3p
(2π)3 Eχ(p)

[
f BE
χ (p) + f BE

χ̄ (p)
]

is the energy density of

particles in thermal configuration

I The charge density is Qχ ' Qc + Qχ
th

where Qχ
th = nχth − nχ̄th =

∫
d3p

(2π)3

[
f BE
χ (p)− f BE

χ̄ (p)
]

Note that, since mχ
th(Qc ,Tχ, h) depends on Qc , Tχ and h, also nχth, ρχth and Qχ

th

in general depends on Qc , Tχ and h through the χ mass.
Anyhow at Tχ � mχ > µ one can neglect mχ and µ and recover the usual
result

nχth = nχ̄th =
ζ(3)

π2
T 3
χ, ρχth =

π2

15
T 4
χ, Qχ

th =
µ(Tχ)

3
T 2
χ



Cosmological evolution of Tχ and Qc

For any initial value of Qc/T
3
χ, the equilibrium configuration

fχ(p) = f BE
χ (p) + (2π)3 Qc δ

3(p), fχ̄(p) = f BE
χ̄ (p)

is solution of the relativistic Boltzmann equation for

I Tχ ∼ 1/a(t)

I Qc ∼ T 3
χ ∼ 1/a(t)3

I m−µ
Tχ
� 1

at any temperature Tχ � mχ ≥ µ > 0 and one has

I Qc/T
3
χ is constant as long as Tχ � mχ

I α ≡
[
h
(

2 Qc
T 3
χ

+ 1
3

)]1/3

is constant as long as Tχ � mχ and therefore

mχ
th = α · Tχ ∝ Tχ.

I The condition Tχ � mχ implies α� 1

I k =
Tχ
Tγ

is also constant



Cosmological evolution

Define the following temperatures

I T1χ ≡ mχ
0 /α, T2χ ≡ mχ

0

I The corresponding photons temperatures are
T1γ ≡ T1χ/k, T2γ ≡ T2χ/k

One can divide the scalar field evolution in three cosmological epochs

I Tχ � T1χ where mχ ' mχ
th = α · Tχ and Tχ � mχ

therefore ρχc ' mχ
th Qc ∼ T 4

χ and ρχth ∼ T 4
χ

I T1χ � Tχ � T2χ where mχ ' mχ
0

ρχc ' mχ
0 Qc ∼ T 3

χ and ρχth ∼ T 4
χ

The density parameter of the condensate Ωc ≡ ρχc /3ρtot begins to grow
since ρχc /ρ

χ
rad ∼ a(t)

I Tχ � T2χ

The thermalized χ particles are non relativistic so the whole condensate
energy density behave as matter ρχ ∼ a(t)3



Remarks
I The thermalized χ− χ̄ gas is relativistic at temperatures Tχ � T1χ ≡ mχ

o

i.e. mχ
0 fixes the temperature at which the termalized gas becomes

non-relativistic

I The condensate evolves as radiation at temperatures Tχ � T1χ ≡ mχ
o /α

i.e. mχ
0 and α fixe the temperature at which the condensate becomes

non-relativistic

I One has two parameters, mχ
0 and α that fix T1χ and determine the begin

matter domination

I at temperatures Tχ < T1χ, the DM density parameter Ωc begins to grow

Radiation-Matter equality is then fixed by ρc , mχ
0 and α: no fine tuning

I In the case without self-interaction the condensate always evolves as
matter: fine tuning on ρχc !!!
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Condensate formation

I The χ field is produced via inflaton decay with a charge asymmetry such
that Qχ > 0, via an Affleck-Dine mechanism

M. Dine, Nucl. Phys. B249, 361 (1985).

I Just one has ρχ ∝ a−4 and R ≡ Qχ/ρχ3/4 is constant

I The condition for the condensate formation is R ≥ 0.2 h1/2

G.Mangano, G.Miele,S.Pastor,M. Peloso. Phys.Rev.D64:123509,2001

I This is re expressed as R =

Qc
T 3
χ

+
µ(Tχ)

3Tχ(
α Qc
T 3
χ

+π
2

15

)3/4 > 0.2 h1/2

This condition should be verified at posteriori after the determination
of the parameters h and mχ

0 and initial condition for Qc/T
3
χ



Effective number of extra neutrinos

I As long as Tχ � mχ
0 , the thermalized χ− χ̄ gas behaves as radiation.

The number of extra neutrinos related to it is

∆th
ν = 16

7

(
Tχ
Tν

)4

I As long as Tχ � mχ
0 /α, the condensate behaves as radiation.

The number of extra neutrinos related to it is

∆c
ν = 240

7π2

(
Tχ
Tν

)4
αQc
T 3
χ

These should be in the BBN and CMB limits in the range of temperatures
where the condensate and the thermalized gas are relativistic

I BBN bound∆eff
ν = 0.054+1.4

−1.2

I CMB bound ∆eff
ν = 1.30+0.86

−0.88



Dark matter halos

Taking χ = σ(r)e iωt/
√

2 the field equations in newtonian limit read

4Φ = 4πG

(
2ω2σ2 − 1

2
mχ2

0 σ2 − 1

2
hσ2

)
4σ + (1− 4Φ)ω2σ − (1− 2Φ)

(
mχ2

0

2
σ + hσ3

)
= 0

For Λ ≡ h/
(
4π G mχ2

0

)
� 1, Λ−1 � σ0/Mp � Λ−1/2 and r ≤ π LH one has

(A.Arbey, J.Lesgourgues, P.Salati. Phys.Rev.D65:083514,2002)

σ(r) = σ0

√
sin(r/LH )

(r/LH )
, rφ′(r) = v(r) = 2πΛ

σ2
0

M2
p

[
sin(r/LH )

(r/LH )
− cos(r/LH )

]
LH ≡ h1/2 Mp

m
χ2
0

, or mχ
0 = 3 h1/4

√
Kpc
LH

eV

We only know that the size of the halos is at least π LH so:
LH is a minimum for the size of DM halos and any value LH ≤ 100Kpc is
viable



Is the model viable?

In A.Arbey, J.Lesgourgues, P.Salati. Phys.Rev.D65:083514,2002. e-Print:
astro-ph/0112324, it is argued that choosing LH ' 10Kpc (the dimension of
the core od DM halos) one obtains ∆eff

ν ' 5 and they concludes that the model
is not viable.
This is correct?

I The analytical solution is incomplete, since it is valid for r ≤ π LH .

No indication about the behavior of the solution elsewhere.

I The halo could be much greater than LH for many orders of magnitude.

I LH is a lower bound for the size od DM halos, therefore any
LH ≤ 100Kpc is viable.

I Since ∆c
ν ' 3.34

(
LH

Mpc

)2/3

, lowering LH one obtains a viable ∆eff
ν .

I The analysis of spherical solutions is incomplete, since it does not account
for the contribution of baryons, radiation and thermalized χ− χ̄ gas.



Bounds on the thermalized χ− χ̄ gas

I At BBN it should be ∆th
ν = 16

7

(
Tχ
Tν

)4

≤ 0.054+1.4
−1.2

I This gives k ≡ Tχ/Tγ ≤ 0.8

I One has ρχth/ρrel ≤ k4/gr ≤ 0.3 · k4, for gr ≥ 3.36

I Therefore at matter domination one will have ρχth < ρrel � ρχc

I At radiation-matter equality the condensate should evolve as matter so
T eq
χ = k T eq

γ � T1χ

I Therefore we should require

T eq
γ ' 0.698 eV � m

χ
0

kα



Bounds on the condensate

Introduce a parameter n as LH ' 0.1
n2 Kpc =⇒ mχ

0 ' 10 n h1/4

I t radiation matter equality ρc eq
χ = mχ

0 Qeq
c = ρeq

DM ' 0.323 eV 4

I Qc
T 3
χ

=
Qeq

c

T
eq3
χ

= 9.5·10−2

n k3h1/4

I For Qc/T
3
χ ≥ 1 one has α ' 0.57 h1/4

n1/3k

I One has ∆c
ν ' 0.72

n4/3

Only depends on n

I From BBN bounds one has n ≥ 0.78



Temperatures

Using mχ
0 ' 10 n h1/4 and α ' 0.57 h1/4

n1/3k
one has

T1χ ' 17.6 k n4/3 eV , T2χ ' 10 n h1/4 eV , T eq
χ = 0.69 k eV

I The condition T1χ ≥ T eq
χ = k T eq

γ gives n ≥ 0.088

I The condition T1χ � T2χ implies that h� 10 k4 n4/3



Realistic model
∆c
ν ' 3.34

(
LH

Mpc

)2/3

, LH ' 0.1
n2 Mpc

Take n ' 0.8 and k ' 0.3

I LH ' 0.17Kpc that is well below the typical size for DM halos

I Qc/T
3
χ ∼ 10 h−1/4 ≥ 1 for any h < 1 and α ' 2 h1/4

I R ' h−1/4 ≥ 0.2 h1/2, so the condensate forms at early times.

I ∆c
ν ' 0.97

I mχ
0 ' 8 h1/4 eV much greater than the value m ' 10−27 eV in non

self-interacting case

I The condition T1χ ≥ T eq
χ = k T eq

γ is verified since n ≥ 0.088

I The condition T1χ � T2χ implies that h� 10−2

t t1 t2 teq

Tχ 0.39 eV 8 h1/4 eV 0.21 eV

Tγ 13 eV 26.7 h1/4 eV 0.698 eV

h 10−4 10−8 10−12

α 0.2 0.02 0.002

mχ
0 0.8 eV 0.08 eV 0.008 eV

T2γ 2.67 eV 0.267 eV 0.002 eV



Conclusions

Advantages of the model

I No fine tuning on ρχ at early times

I Mechanism for the B-E condensate formation

I Realistic value of the mass as large as 1 eV

Further studies

I Growth of anisotropy in the linear regime via the Boltzmann equation

I Comparison with WMAP and Planck data

I Structure formation in the non linear regime



Comments on Harko, arXiv:1101.3655 [gr-qc]

The author use the Gross-Pitaevskii equation

i~∂tψ(~r , t) =
[
−~2∇2 + Vrot(r) + Vext(r) + g ′(|ψ(~r , t)|2)

]
ψ(~r , t)

with

g(ρm) = u0
2
|ψ|4 = u0

2
|ρm|2

Pm(ρm) = U0ρ
2
m

ωeff = Pm/ρm = U0ρm

(1)

and, in the hydrodynamical representation, he obtains the solution

ρb(a) = c2

U0

ρ0
(a/a0)3−ρ0

(2)

I This solution is singular at (a/a0)3 = ρ0, not at the same time of the
metric and other energy densities that are singular at a = 0.

I Problems with radiation domination



Ωr = Ω0
r

1
(a/a0)4 , ΩBE = Ω0

DM
1−ρ0

(a/a0)3−ρ0
(3)

with Ω0
DM � Ω0

r . Therefore the ratio between the two density parameters is

ΩBE/Ωr = (Ω0
DM/Ω0

r ) (a/a0) 1−ρ0
1−ρ0/(a/a0)3 = (Ω0

DM/Ω0
r ) f (a)

f (a) = (a/a0) 1−ρ0
1−ρ0/(a/a0)3

(4)

The minimum of ΩBE/Ωr is at
f ′(a) = (1/a0) 1−ρ0

(1−ρ0/(a/a0)3)2

[
1− 4ρ0/(a/a0)3

]
= 0 i.e. at amin = a0 (4 ρ0)1/3

where

(ΩBE/Ωr )min = (Ω0
DM/Ω0

r ) 4
3

(4 ρ0)1/3 (1− ρ0)� 1 (5)

since Ω0
DM/Ω0

r � 1 and ρ0 ' 0.7 in the model


