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General covariance requires geometric formulation of the theory!



Relativistic kinetic theory: Motivation

Previous work regarding the formulation of relativistic kinetic theory:
Juttner, Synge, Taubner & Weinberg, Israel, Lindquist, Ehlers,
Cercignani & Kremer, ...

Mathematical questions (well-posedness, global existence, static and
stationary solutions): Rein & Rendall, Andréasson, Kunze, Dafermos,
Ringstrom, Fajman, Joudioux, Smulevici, ...

In this work we start with a simple case: A collisionless, relativistic
gas propagating on a Schwarzschild black hole background.

Collaborators: Paola Rioseco, Thomas Zannias (IFM)



Geometry of the cotangent bundle

Spacetime manifold: (M, g)

Relativistic phase space (cotangent bundle):

T°M ={(z,p) :x e M,pe T M}

o M
Natural projection map:
m:T"M — M, (x,p) — x *(x, ) ¥
Poincare (or canonical) one-form: 7 p)
y 7

Symplectic form:
1} =dO = dp, N dx"

Free particle Hamiltonian: T

H(z,p) := 5951(19,10) = 59" (2)pupy




Geometry of the cotangent bundle

Liouville vector field is defined as
corresponding Hamiltonian vector field:

dH = —i;Q = Q(-, L)

Explicitly:

0 1 0g*P(x) O

— MV -

Relativistic Boltzmann equation:

collision term

one-particle distribution function

In the collisionless case this reduces to
the Liouville equation.




Solving the Liouville equation

Assume a Schwarzschild background (mass = 1) in ingoing Eddington-Finkelstein
coordinates (also works for Kerr!). The free-particle Hamiltonian 1s

1 2\ , 4 2\ , 1 (., p}
H(x’p)_Q[_(1+r>pt+7“ptpr+<1_7“>pr+7“2(pﬁ_FSiHQQg

Conserved quantities: rest mass (m), energy (E), angular momentum

Integrable Hamiltonian system, so can apply standard tools from dynamical systems.
Invariant subsets:

* 1 p2
Uim,ge..0 = {@3717) €T*M : H(z,p) = —§m27pt =—E,p, = gzmpq% + singﬁ — 52}

By definition, these sets are invariant with respect to the Hamiltonian flow, and
restriction of Poincaré one-form to these sets 1s closed. If not empty, these are 4d
submanifolds of phase space which are topologically equal to

R x St x St x St or R2 x §1 x St



Solving the Liouville equation

« (t,p) are free, and give a R x S factor.
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Solving the Liouville equation

Motion in the radial direction:

(1= 2) pr — 2E]” 4 Vi o(r) = E2 with Vi, o(r) = (1 — 2
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Solving the Liouville equation

New symplectic coordinates defined by
generating function L Ee.v

S(x;m, E 0, 0) z/@z/pudaz“

Yz Yz

P0=m2/2, P1:E, PQZKZ,P?,:EQ
QM = 88759“ (Q* and Q7 are angles) Vo

In terms of the new coordinates the (0, Po) \

Hamiltonian 1s ssmply H = —F
and hence the Liouville equation
becomes trivial:

Lif] = -2 =0 ! (z)

Most general solution:

f(xap) :F37P07P17P27P3)
X

t+... 0+ ..

Stationary and axisymmetric if
independent of the first two variables.



Spherical steady-state solutions

For a spherical, steady-state solution:

Assume, further, a simple gas which 1s 1in equilibrium at infinity:

f(x,p) = ad (\/—ZH(:L',p) - m) e PE 3. inverse temperature

Compute the observables: current density and stress energy-momentum tensor:

ww= [ wien It Tu@= [ wnsen

=1 (z) =1 (z)

Decomposition

B ()M wY _(CYH oV VI
JH =(n*, TH =(e9f el + jej
J=1,2,3

particle density energy density principle pressures

In general, ey is not proportional to u*, and p; # p2 # ps.



Spherical steady-state solutions

Observables have three contributions:

T/ﬂ/ _ T/S'Lyn) 4+ T’L(L;s/cat) 4+ T(bounded)

j93%
\ bounded trajectories

absorbed by BH no contribution at horizon nor infinity
no contribution at infinit

scattered particles
no contribution at horizon

At infinity, gas behaves like isotropic fluid with ideal gas equation of state (2 = mp)

Neo(2) = dmam? ng(z)7 Eoo(2) = dmam® Klz<z) + %;Z) : Poc(2) = B oo (2)

At the horizon, the gas ceases to be 1sotropic. For high z:

2 31
tH _ e <3+ =) ~ 1.79mc?

ng 23 3
2 2
Prad mc 31 2 Ptan mc 2
= -3+ 1/ — | = 0.062mc", = ~ (.144mc

The tangential pressure is about twice as large as the radial one!



Spherical steady-state solutions

Accretion rate for large z:
4 J" 9
~ —16M°V2mz

Noo

'u,:

Compression rate for large z:
Ny 62
—— ) S
- T

Both are smaller by a factor of z = mf compared to the hydrodynamic case (Bondi
accretion). For accretion from the interstellar medium, z ~ 10”

(see book by Shapiro & Teukolsky and references therein for corresponding
Newtonian-based calculation)

Interpretation (?): When collisions are taken into account, particles with large angular
momentum will collide and augment radial pressure.



Stability result for time-dependent case

1

The general solution takes the form (for fixed mass m):
f(xap):F<G_t7Q27Q37E7€Z782) P I e N

with G independent of 7.

Suppose the initial distribution function satisfies the following conditions:
(1) £ = 0 for bounded orbits
(2) 0 < F < ae™® (i.e. bounded by an equilibrium distribution function)

(3) lim F(G,Q% Q% B, (., (?) = fx(E) uniformly in (Q*, QL. (%)
—> 00

Then, along the world line of static observers, the current density and stress energy-
momentum converge pointwise to the corresponding observables of the steady-state
solution with distribution function foo (E)

In particular, if foo (E) = 0 the gas disperses completely.



Conclusions and Outlook

Rich structure of the cotangent bundle leads naturally to symplectic structure and many
other nice properties no mentioned in this talk (bundle metric, volume form, ...)

When geodesic motion on spacetime manifold 1s integrable, one can introduce “good”
symplectic coordinates on relativistic phase space, which trivialize the Liouville vector
field (action-angle-like variables).

Using these coordinates, one can study the behavior of observables “by inspection”, and
prove stability results, for instance.

In future work, we want to study disk solutions around Kerr black holes
(in this case Carter constant replaces the total angular momentum)

The use of “good” symplectic coordinates might be useful for the study of perturbed
systems, for example when taking into account collisions or the self-gravity of the gas at
the perturbative level.



