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Relativistic kinetic theory: Motivation

Dust collapse (Eardley & Smarr, Christodoulou, Newman…) 
 Shown here a conformal diagram from N. Ortiz & OS 2011

• Description of dilute, relativistic gas 
in the presence of strong 
gravitational field. 

• Accretion into a black hole 

• Distribution of stars around 
supermassive black holes  
(in this case collisionless). 

• Cosmic Censorship Hypothesis: 
Provide a description of the matter 
that goes beyond the scalar field 
model or the traditional perfect 
fluids and magneto-fluids.
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In this work we start with a simple case: A collisionless, relativistic 
gas propagating on a Schwarzschild black hole background.

Collaborators: Paola Rioseco, Thomas Zannias (IFM)

• Previous work regarding the formulation of relativistic kinetic theory: 
Jüttner, Synge, Taubner & Weinberg, Israel, Lindquist, Ehlers, 
Cercignani & Kremer, … 

• Mathematical questions (well-posedness, global existence, static and 
stationary solutions): Rein & Rendall, Andréasson, Kunze, Dafermos, 
Ringström, Fajman, Joudioux, Smulevici, …

Relativistic kinetic theory: Motivation



Geometry of the cotangent bundle
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• Spacetime manifold:  

• Relativistic phase space (cotangent bundle):  
 

• Natural projection map:  

• Poincaré (or canonical) one-form:  

• Symplectic form:  

• Free particle Hamiltonian:  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Geometry of the cotangent bundle
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• Liouville vector field is defined as 
corresponding Hamiltonian vector field:  
 

• Explicitly: 

!

• Relativistic Boltzmann equation:  
 

!

• In the collisionless case this reduces to 
the Liouville equation.

one-particle distribution function

collision term
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• Assume a Schwarzschild background (mass = 1) in ingoing Eddington-Finkelstein 
coordinates (also works for Kerr!). The free-particle Hamiltonian is  
 
 

• Conserved quantities: rest mass (m), energy (E), angular momentum 

• Integrable Hamiltonian system, so can apply standard tools from dynamical systems.  
Invariant subsets: 

• By definition, these sets are invariant with respect to the Hamiltonian flow, and 
restriction of Poincaré one-form to these sets is closed. If not empty, these are 4d 
submanifolds of phase space which are topologically equal to

Solving the Liouville equation
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•   

•   
 

Solving the Liouville equation
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• Motion in the radial direction:

Solving the Liouville equation
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x = r, v = ṙ



• New symplectic coordinates defined by 
generating function  
 

•   

• In terms of the new coordinates the 
Hamiltonian is simply  
and hence the Liouville equation 
becomes trivial:  

• Most general solution:  
 
 

• Stationary and axisymmetric if 
independent of the first two variables.

Solving the Liouville equation
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• For a spherical, steady-state solution:  

• Assume, further, a simple gas which is in equilibrium at infinity:  

• Compute the observables: current density and stress energy-momentum tensor:  
 

• Decomposition  
 
 

Spherical steady-state solutions
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• Observables have three contributions:  
 
 
 
 
 

• At infinity, gas behaves like isotropic fluid with ideal gas equation of state  

• At the horizon, the gas ceases to be isotropic. For high z:  

Spherical steady-state solutions
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The tangential pressure is about twice as large as the radial one!



• Accretion rate for large z:  
 

• Compression rate for large z:  
 

• Both are smaller by a factor of              compared to the hydrodynamic case (Bondi 
accretion). For accretion from the interstellar medium,  
(see book by Shapiro & Teukolsky and references therein for corresponding 
Newtonian-based calculation) 

• Interpretation (?): When collisions are taken into account, particles with large angular 
momentum will collide and augment radial pressure.  

Spherical steady-state solutions
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• The general solution takes the form (for fixed mass m):  
 
 
with G independent of t. 
 

• Suppose the initial distribution function satisfies the following conditions:  
(1) F = 0 for bounded orbits  
(2)                           (i.e. bounded by an equilibrium distribution function)  
(3)  
 
 
Then, along the world line of static observers, the current density and stress energy-
momentum converge pointwise to the corresponding observables of the steady-state 
solution with distribution function  

• In particular, if                  the gas disperses completely.  

Stability result for time-dependent case

G

G



• Rich structure of the cotangent bundle leads naturally to symplectic structure and many 
other nice properties no mentioned in this talk (bundle metric, volume form, …) 

• When geodesic motion on spacetime manifold is integrable, one can introduce “good” 
symplectic coordinates on relativistic phase space, which trivialize the Liouville vector 
field (action-angle-like variables). 

• Using these coordinates, one can study the behavior of observables “by inspection”, and 
prove stability results, for instance. 

• In future work, we want to study disk solutions around Kerr black holes  
(in this case Carter constant replaces the total angular momentum) 

• The use of “good” symplectic coordinates might be useful for the study of perturbed 
systems, for example when taking into account collisions or the self-gravity of the gas at 
the perturbative level.

Conclusions and Outlook


