A new model for describe astrophysical objects with oblate or prolate deformation

Framsol López Suspes Guilermo A. González V. & Jerson I. Reina M.

Universidad Santo Tomás & UIS - Bucaramanga

framsol.lopez@ustabuca.edu.co

30 de septiembre de 2016

D Motivación

- Galaxia Espiral
- Curva de Rotación
- Potenciales Gravitatorios
- 2 Estabilidad del Modelo

3 Nuevo Potencial

Componentes Galaxia Espiral

Framsol López (USTA-UIS)

30 de septiembre de 2016 3 / 22

Curva de Rotación

Framsol López (USTA-UIS)

Potenciales Gravitatorios

• Potenciales esféricos

donde $\rho = M/(4\pi a^3)$.

Potenciales Gravitatorios

• Potenciales esféricos

donde $\rho = M/(4\pi a^3)$.

• Potencial esférico - Plummer

$$\Phi_P = \frac{-G M}{\sqrt{r^2 + a^2}}; \quad \rho = \frac{3M}{4\pi a^3} \left(1 + \frac{r^2}{a^2}\right)^{-5/2}$$

- 10

• Potencial esférico - Plummer

$$\Phi_P = \frac{-G M}{\sqrt{r^2 + a^2}}; \quad \rho = \frac{3M}{4\pi a^3} \left(1 + \frac{r^2}{a^2}\right)^{-5/2}$$

• Potencial esférico - Hernquist

$$\Phi_H = \frac{-G M}{r+a}; \quad \rho = \frac{M}{2\pi} \frac{a}{r(r+a)^3}$$

Framsol López (USTA-UIS)

Potencial esférico - Plummer

$$\Phi_P = \frac{-G M}{\sqrt{r^2 + a^2}}; \quad \rho = \frac{3M}{4\pi a^3} \left(1 + \frac{r^2}{a^2}\right)^{-5/2}$$

• Potencial esférico - Hernquist

$$\Phi_H = \frac{-G M}{r+a}; \quad \rho = \frac{M}{2\pi} \frac{a}{r(r+a)^3}$$

Potencial axialmente simétricos - Disco de Kuzmin

$$\Phi_{\mathcal{K}} = \frac{-GM}{\sqrt{R^2 + (a+\mid z \mid)^2}}; \quad \Sigma_{\mathcal{K}} = \frac{aM}{2\pi (R^2 + a^2)^{3/2}}$$

Framsol López (USTA-UIS)

• Potencial Toomre

$$\Phi_{T} = \left(\frac{d}{da^{2}}\right)^{n-1} \Phi_{K}; \quad \Sigma_{T} = \left(\frac{d}{da^{2}}\right)^{n-1} \sigma_{K}$$

• Potencial Toomre

Potencial Toomre

• Expansión multipolar

$$\Phi(R,z) = -\frac{\alpha}{\sqrt{R^2 + z^2}} - \frac{\beta \left(2z^2 - R^2\right)}{2 \left(R^2 + z^2\right)^{5/2}} - \frac{\gamma \left(2z^3 - 3R^2z\right)}{2 \left(R^2 + z^2\right)^{7/2}}$$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

• Expansión multipolar

$$\Phi(R,z) = -\frac{\alpha}{\sqrt{R^2 + z^2}} - \frac{\beta \left(2z^2 - R^2\right)}{2 \left(R^2 + z^2\right)^{5/2}} - \frac{\gamma \left(2z^3 - 3R^2 z\right)}{2 \left(R^2 + z^2\right)^{7/2}}$$

Framsol López (USTA-UIS)

70&70 Maestros Herrera y Gambini

30 de septiembre de 2016 9 / 22

• Potencial Aplanado Miyamoto-Nagai

$$\Phi_{MN} = \frac{-GM}{\sqrt{R^2 + (a + \sqrt{b^2 + z^2})^2}} \quad \Rightarrow \quad 4\pi G\rho = \nabla^2 \Phi$$

esto es, se cambio $z \rightarrow a + \sqrt{b^2 + z^2}$, donde *a* y *b* son constantes.

Potencial de Satoh

$$\Phi_{S} = \left(\frac{d}{db^{2}}\right)^{n} \Phi_{MN};$$

Framsol López (USTA-UIS)

70&70 Maestros Herrera y Gambini

30 de septiembre de <u>2016</u>

Potencial axialmente simétrico

$$\Phi = \Phi(R, z);$$
 $\nabla^2 \Phi = \Phi_{,RR} + \frac{\Phi_{,R}}{R} + \Phi_{,zz} = 0$

Superposición de soluciones

$$\Phi = \Phi_h + \Phi_d \qquad \Rightarrow \qquad \nabla^2 \Phi = \nabla^2 \Phi_h + \nabla^2 \Phi_d = \nabla^2 \Phi_h = 4\pi G\rho$$

Ecuaciones de movimiento

$$\dot{R} = V_R$$
, $\dot{z} = V_z$, (1)

$$\dot{V}_R = -\frac{\partial}{\partial R} \Phi_{eff} , \qquad \dot{V}_z = -\frac{\partial}{\partial z} \Phi_{eff} , \qquad (2)$$

siendo $\Phi_{\textit{eff}}$ es un potencial auxiliar conocido como potencial efectivo, el cual está dado por

$$\Phi_{eff}(R,z) = \tilde{\Phi}(R,z) + \frac{\ell^2}{2R^2}.$$
(3)

Acá ℓ es la integral primera de movimiento. La otra cantidad constante en el movimiento es la energía total específica o el hamiltoniano específico dado por

$$\mathcal{E} = \frac{1}{2}(V_R^2 + V_z^2) + \Phi_{eff}(R, z) = \mathcal{H}.$$

Potencial de Hénon Heiles

(a) Espacio de Fases. (b) Superficie de Poincaré. Sistema Hénon Ha Trayectoria regular.

Potencial de Hénon Heiles

(a) Espacio de Fases. (b) Superficie de Poincaré. Sistema Hénon Heiles. Trayectoria caótica.

Deformacion Prolata + Octupolar

Framsol López (USTA-UIS)

30 de septiembre de 2016

Deformacion Prolata + Octupolar

Framsol López (USTA-UIS)

Deformacion Prolata + Octupolar

Framsol López (USTA-UIS)

30 de septiembre de 2016

Estas cantidades físicas son encontradas y evaluadas en el plano de la fuente, plano z = 0, ellas son: la velocidad circular, v_c , la frecuencia epíciclica, κ , y la frecuencia vertical, ν . Las expresiones para cada una de ellas son (**Binney** & **Tremaine**, 2008)

$$egin{aligned} & v_{\mathrm{c}}^2 = R ilde{\Phi}_{,R}, \ & \kappa^2 = ilde{\Phi}_{,RR} + rac{3}{R} ilde{\Phi}_{,RR}, \ &
u^2 = ilde{\Phi}_{,zz}, \end{aligned}$$

Nuevo Potencial

El modelo es una extensión del Miyamoto & Nagai, él se obtiene con la inclusión de la transformación en la coordenada radial $R \rightarrow c + \sqrt{R^2 + b^2}$, por lo tanto el nuevo potencial triaxial tendrá un potencial gravitacional dado por la expresión

$$\Phi_{LSRG} = rac{ ilde{M}}{(\sqrt{ ilde{R}^2 + 1} + ilde{c})^2 + (ilde{a} + \sqrt{ ilde{z}^2 + 1})^2)^{1/2}}$$

siendo $\tilde{M} = MG/b$, $\tilde{R} = R/b$, $\tilde{z} = z/b$, $\tilde{c} = c/b$ y $\tilde{a} = a/b$. Los parámetros $\tilde{c} = c/b$ y $\tilde{a} = a/b$, definen la deformación prolata y oblata, respectivamente. La densidad de masa se puede encontrar mediante la ecuación de Laplace, esto es

$$\rho = \frac{1}{4\pi G} \nabla^2 \Phi_{LSRG} \; .$$

Deformación Oblata

Figura: (a) Isocontornos del potencial. (b) Superficies de nivel de la Densida masa. Los parámetros usados son $\tilde{M} = 1$, $\tilde{c} = 1$ y $\tilde{a} = 0,01$.

Deformación Prolata

Figura: (a) Isocontornos del potencial. (b) Superficies de nivel de la Densida masa. Los parámetros usados son $\tilde{M} = 1$, $\tilde{c} = 0,01$ y $\tilde{a} = 1$.

Deformación Oblata

Figura: (a) Velocidad Circular. (b) Frecuencia epíciclica. (c) Frecuencia vertical. Los parámetros utilizados son $\tilde{M} = 1$, $\tilde{c} = 1$ y $\tilde{a} = 0,01$, Deformación Oblata

Deformación Prolata

Figura: (a) Velocidad Circular. (b) Frecuencia epíciclica. (c) Frecuencia vertical. Los parámetros utilizados son $\tilde{M} = 1$, $\tilde{c} = 0.01$ y $\tilde{a} = 1$, Deformación Prolatar