

Putting gravity in control

César S López Monsalvo Conacyt-Universidad Autónoma Metropolitana

Gravity

A dynamical theory of matter and geometry

Control Theory

A way in which an otherwise arbitrary process does what we want.

Free dynamics [Physics]

Natural evolution

Given a Lagrangian L, find the integral curves of E[L] = 0

Controlled dynamics [Engineering]

Desired evolution

Given a Lagrangian L, find a set of forces u, so that the integral curves of E[L] = usatisfy certain desired property

Stabilization of simple mechanical systems

This is hard!

Stabilization of simple mechanical systems controlling just a few DoF

This is harder!

Geometry Shaping

Simple forced mechanical system

$= \{Q, G, V, F_e\}$

Configuration space

Riemannian metric (Kinetic energy)

A function on Q (Potential Energy)

External Forces

$\nabla_{\dot{\gamma}(t)}^{G} \dot{\gamma}(t) = -G^{\natural} \circ dV \left[\dot{\gamma}(t) \right] + G^{\natural} \circ F_{e} \left[\dot{\gamma}(t) \right]$

Acceleration

Potential difference

External forces

Simple mechanical control system

$\Sigma = \{Q, G, V, F_e, \mathcal{W}\}$

Same as before

sub-bundle of the cotangent bundle of Q

$\nabla_{\dot{\gamma}(t)}^{G} \dot{\gamma}(t) = -G^{\natural} \circ dV \left[\dot{\gamma}(t) \right] + G^{\natural} \circ F_{e} \left[\dot{\gamma}(t) \right] + G^{\natural} \circ u \left[\dot{\gamma}(t) \right]$

Acceleration

Potential difference External forces

Control input

$\nabla_{\dot{\gamma}(t)}^{G} \dot{\gamma}(t) = -G^{\natural} \circ dV [\dot{\gamma}(t)]$

Acceleration

Potential difference External forces

$+G^{\natural}\circ u\left[\dot{\gamma}(t)\right]$

Control input

Jacobi metric

Acceleration

Potential difference External forces

$+G^{\natural} \circ u \left[\dot{\gamma}(t)\right]$

Control input

Jacobi metric

Acceleration

Potential difference External forces

 $+G^{\natural}\circ u\left[\dot{\gamma}(t)\right]$

Control input (Underactuated)

Open loop control & Closed loop control

Geometry Shaping

Statement of the problem

Given an open loop simple controlled mechanical system, find (if possible) a control force such that the closed loop system is a forced mechanical system alone

2011-2016

Every linearly controllable simple mechanical system with one degree of under actuation is stabilizable by geometry shaping

There is an infinite set of control laws that do the job.

Which is the best?

Extremize a cost functional

$J = \int L(G, G', G'', \ldots)$

Extremize a cost functional

$J = \int L(G, G', G'', \ldots)$

This is gravity!

Summary

•Geometric control theory is still in its infancy gravitational theories.

- The problem of geometrizing dynamics is a contemporary research topic •Stabilizing simple Lagrangian systems remains largely an open issue
- Optimal control by energy shaping is morally tantamount to study various