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Motivation and Perspective

Motivation

The so-called problem of the flattening of the galactic rotation curves, one of
the evidences of the existence of Dark Matter.

Perspective

Taking a look, with renovated interest and critical eye, at stationary and
axisymmetric metrics:
• Carefully bringing out the hidden (legitimate and not-so-legitimate)
assumptions
• Pursuing a better understanding of the relationship between geometry
and observed quantities
• Above all, expressing the spacetime metric in terms of potentially
observable quantities
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Dark Matter

What is Dark Matter (DM)?

Matter we cannot see directly (non-luminous).

Detected only through its gravitational effects.

Most of the matter in the Universe? There are strong evidences of its
existence (gravitational lensing, cosmological arguments...)

What is DM made of?

Baryonic DM: Massive Compact Halo Objects (MACHOs): Brown
dwarfs and Jupiter-sized planets, Cold stellar remnants, Cold Hydrogen
(Elmegreen, Science 316 (2007) 1132)

Non-baryonic DM:
Hot DM: particles moving at speeds close to c (massive neutrinos).
Warm DM: particles moving relativistically of m ∼ 1eV (gravitinos and
photinos).
Cold Dark Matter: Weakly Interacting Massive Particles (WIMPs), predicted
by some theoretical particle models (exotic DM).
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How (and when) it all begun: 1st observational facts

Oort (1932). The velocity of stars (Doppler shift) in the local galactic
neighborhood were higher than the escape velocity, thus there must be
unseen matter. M/L ∼ 3 ( M: total amount of mass needed, L total
amount of visible mass in terms of the luminosity)

Zwicky (1933). Observations of the Coma Berenice Cluster of galaxies:
some galaxies had velocities of about 1000 km/sec (greater than the
escape velocity calculated using the Virial theorem). M/L ∼ 400− 500

Rubin (late 1960s - early 1970s). Spiral galaxies are such that the
rotation speed rises steadily from the center to the inner disk, and then
becomes roughly constant (flat) in the outer parts. M/L ∼ 10.
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Flattening of the rotation curves

Rotation curve for the spiral galaxy NGC3198

Newtonian gravity

m
V 2

r
= m

GM(r)

r 2 ⇒ V =

√
GM(r)

r
⇔ M(r) =

rV 2

G

where M(r) is the total mass enclosed in a sphere of radius r .
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Interpretation

Almost all of the stars in a galaxy are concentrated in r . 10 kpc.

According to V =
√

GM(r)/r , the rotation speed should rise to a
maximum in the inner parts, and then fall as V ∝ 1/r 1/2 outside a radius
of ∼ 10 kpc (Kepler). Clearly, this is not what happens!
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Empirical modeling of µ and V for the galactic halo

The most widely adopted model is the NFW Halo model (Navarro, Frenk
and White, Ap J 490 (1997) 493):

µ(r) =
µ0

(r/rc) (1 + (r/rc))2

The resulting velocity is

V = V0

√
rc

r
ln
(

1 +
r
rc

)
− 1

1 + r
rc

Thus, the DM halo is assumed to be spherically symmetric.
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Where we come from and where we want to go to

Thus far, the problem of the galaxy rotation curves (RC) was dealt with in
a Newtonian manner (besides assuming sphericall symmetry for the DM
halo).

The velocity of the stars and their distances to the galactic center are
measured using standard astronomical methods (Doppler shift and
astrometry). These are all the data we have.

Next, we aim at treating the problem relativistically, in the hope that the
amount of DM needed to explain the RC may be reduced (or not).

After all, if we have a correct theory for gravitation, namely GR, why not
use it?!
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Where we come from ...

In order to do that we first need a suitable model of galaxy in General
Relativity.

Next, and in order to test the predictions of the theory against the
observational data we have, we need to understand:

What is, in the GR context, the velocity V that astronomers measure.

What is, in the GR context, the distance from the galactic center that
astronomers measure.

Further, and since measurements are made by observers (astronomers), we
need to understand what is an observer and who are the observers carrying
out the above measurements, i.e.: how is an astronomer to be represented
within this context.
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Basic assumptions

Matter content

Matter is modeled as a pressureless (dust) perfect fluid

Tab = µuaub, uaua = −1

where ua is the four-velocity of the matter and µ its density.

Further, u̇a = 0, Θ = 0, i.e.: the fluid is geodesic and non-expanding as
a consequence of the contracted Bianchi identities.

Spacetime Geometry

The spacetime is assumed to be stationary and axisymmetric, and the
orthogonal transitivity condition holds. Coordinates xa = ρ, z, φ, t
(equivalent to Weyl coordinates) may be chosen s.t. the 2 KVs are
~ξ = ∂φ, ~η = ∂t and the metric is (see Bardeen, ApJ 162 (1970) 71)

ds2 = e2µ
(

dρ2 + dz2
)

+ e2ψ (dφ− ωdt)2 − e2νdt2
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First consequences

Due to EFEs and the assumed form of the metric, it follows that

~u = N (Ω∂φ + ∂t ) , Ω = Ω(ρ, z)

and N is a normalization factor. Recall that ∇bT ab = 0 implies that the
fluid must be geodesic and non-expanding: u̇a = 0, Θ = 0.

The function Ω represents the angular velocity of the fluid, since

ua =
dxa

dτ
⇒ dφ

dt
= Ω

For Ω = const the fluid is said to be in rigid rotation, then one can always
set Ω = 0 without loss of generality by using a trivial coordinate change.
Otherwise, it is said to be differentially rotating.
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Observers and observed quantities

Observers in axisymmetric and stationary spacetimes

A family of observers in GR is described by a (f.d., timelike unit) vector
field ~v . Its integral curves are world lines of particles moving with that
velocity.

In an axisymmetric spacetime, a ZAMO (Zero Angular Momentum
Observer) is defined to be an observer ~v whose angular momentum
vanishes: L = vaξ

a = 0 where ~ξ is the axial KV.

In the coordinates above: ~v s.t . vφ = 0 which does not imply vφ = 0:
(dragging of inertial systems).

dφ
ds
6= 0 ⇔ dφ

dt
=

dφ
ds

dt
ds
6= 0
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Observers and observed quantities

Who is the Astronomer?

In the case of stationary and axisymmetric systems, one special ZAMO
is that for which ρ and z are constant, which is precisely s.t. va ∝ t,a i.e.:
its 4-velocity is orthogonal to the hypersurfaces (slices) t = const. This
observer is at rest w.r.t. the frame of distant stars and is identified with
an observer making astronomical observations. We call it Astronomer.

For the metric

ds2 = e2µ
(

dρ2 + dz2
)

+ e2ψ (dφ− ωdt)2 − e2νdt2

~v = N ′ (ω∂φ + ∂t )

and ω = dφ/dt is the angular velocity of that observer.
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Observers and observed quantities

What is V?

Given a timelike unit vector field ~u such as the velocity field of the matter
~u = N(Ω∂φ + ∂t ) it may be decomposed with respect to the Astronomer
in a standard way

~u = γ
(
~v + Vêφ

)
, γ =

(
1− V 2

)−1/2

where êφ = (gφφ)−1/2∂φ, and V is then the velocity with respect to the
Astronomer.

In the coordinates xa = ρ, z, φ, t above

V = eψ−ν (Ω− ω) (1)

Note that V is proportional to the difference of angular velocities: the
angular velocity of ~u and that of the ZAMO ~v , which -in a sense- may be
regarded as the angular velocity of spacetime itself.
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Observers and observed quantities

What is the distance?

Thus, for stationary and axisymmetric systems such as galaxies whose
matter content is dust of four-velocity ~u, it follows that V = eψ−ν (Ω− ω)
gives the velocity of the fluid as measured by an observer at rest with
respect to the frame of fixed stars.

Clearly, the length of an orbit of the axial KV ~ξ = ∂φ in such spacetimes
is ` = 2π

√
gφφ, or, in the above coordinates ` = 2πeψ, thus eψ is the

proper circumferential radius, which in asymptotically flat spacetimes
and at great distances from the axis eψ ∼ ρ.
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What we now know

What we now know

We have a relativistic description of a galaxy; namely: matter is dust
Tab = µuaub, the spacetime is axisymmetric and stationary:

ds2 = e2µ (dρ2 + dz2)+ e2ψ (dφ− ωdt)2 − e2νdt2.

The velocity of matter is ~u = N(Ω∂φ + ∂t ).

The astronomer is ~v = N ′(ω∂φ + ∂t ) or else va = N ′(0, 0, 0,−1).

The velocity of the stars in the galaxy, as measured by the astronomer is
V = eψ−ν (Ω− ω).

The proper circumferential radius (which gives an idea of the distance to
the galactic centre) is D = eψ.
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What we have assumed

What we have assumed

The material content is dust. Quite legitimate, but we are discarding, for
instance, light (of which galaxies have a lot), neutrinos, etc., or the fact
that most galaxies seem to have a BH at its centre.

The geometry is axially symmetric and stationary, and satisfies the
orthogonal transitivity condition. Quite legitimate, but we should be
aware that the latter is a rather strong geometric condition, basically
used for the sake of simplicity, but that forbids -for instance- convective
motions.

The distance of a given star to the centre of the galaxy, as measured by
the astronomer, is given by ρ. Not sure about how good an
approximation this is... In any case, this assumption is always hidden in
the literature.
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What would be desirable to do and the obstacles

What we would like to do...

Clearly, we’d like to find an exact solution to the EFEs that fits the curve
V = V (Distance), and then calculate what is the density µ it
corresponds to.

But...
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What would be desirable to do and the obstacles

... and the obstacles we face

Finding explicit exact solutions to the above problem is extremely difficult.

It would be extremely interesting to look at this problem within the
framework of the exact solutions for rotating disks (rigidly and
differentially) of dust found by Neugebauer, Meinel, Ansorg and
collaborators (see especially: GRG (2000) 32 1365, Phys. Lett. A (1997)
210 160, and references cited therein.)

The curve V = V (Distance) is only known for stars in the equatorial
plane of the galaxy.

One would like a model in which a BH existed at the centre (as this is
what is suspected to happen in most galaxies). It would be interesting to
explore the scenario dealt with in Ansorg and Hennig (CQG (2008) 25
22200, and references cited therein)
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What would be desirable to do and the obstacles

The coordinate ρ is not, in general, the distance to the galactic centre as
measured by astronomers (it only is at large distances and assuming
asymptotic flatness).

It would be nice and convenient to have a good translation into GR of the
distance an astronomer estimates between the centre of a distant galaxy
and a star located in the equatorial plane. Note: all plots of V are given
as V = V (ρ) assuming ρ is the distance to the galactic centre.

The observer we called the Astronomer is not, in general, geodesic. It
only is at large spatial distances.
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What has been done

There have been, roughly, three kinds of attempts to explain relativistically
the RC in galaxies (aside from PPN approximations).

1 Modify GR theory. (Moffat, Carmeli ...)

2 Assume from the start an spherically symmetric DM halo, modeling the
matter as a scalar field.
Of course you can get excellent fits for the RC!
Notice though that it is extremely difficult (if possible) to match an
axisymmetric solution to a spherically symmetric one.

3 Using GR and assuming baryonic matter modeled as dust, just as we’ve
been describing so far.

Cooperstock and Tieu (CT) astro-ph/0507619, 0512048, 0610370

Balasin and Grumiller (BG) astro-ph/0602519v3
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The attempts in GR

Both CT and BG assume the galaxy to be rigidly rotating; i.e.: ~u ∝ ∂t or
Ω = 0, the metric and consequently the field equations are then much
simpler.

ds2 = − (dt − Ndφ)2 + ρ2dφ2 + e2µ
(

dρ2 + dz2
)

CT Mathematically, it is very weak (to say the least!) Physically, it
contains a surface layer in the equatorial plane of negative
mass density... its merit, though is that it was the first time
that GR was used to address this problem.
It got many criticisms (Korzynski, Bonnor, Cross, Zingg et al.,
Vogt and Letelier,...)

BG They produced a Toy Model in which

V (0, z) is regular only for |z| ≤ 1kpc

and other functions appearing in the solution are only regular
in the region of interest (but not beyond that), but the model is
exactly solvable.
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The BG model

V =
N
ρ
, µ ≈ β

ρ

(
N2
ρ + N2

z

)
, β constant

V (ρ, 0) =
V0

ρ

(
R − r0 +

√
r 2
0 + ρ2 −

√
R2 + ρ2

)

µ(ρ→ 0) ∼ βV 2
0

r 2
0
, µ(r0 << ρ << R) ∼ 1

r 2 , µ(ρ ≥ R) ∼ 1
r 6

The chosen values are r0 ∼ 1 kpc (bulge radius), R ∼ 100 kpc, V0 ∼ 200
km/sec (velocity in the flat regime).

Integrating µ it gives a total mass M ∼ 1011M�.
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Reduction of density in BG model

Recall that the Newtonian estimation of the mass density in terms of the
velocity V was

µN =
1

4πG
V 2 + 2rVV ′

r 2

Taking µ in BG and comparing with the above

µ

µN
= β

(
1 +

r 2

V 2 + 2rVV ′

)
Now, the constant β has to be chosen globally, choosing it such that in the
linear regime (∼ within the bulge) both densities coincide, we get, for the flat
regime

µ

µN
|linear = 1 = β

4
3
⇒ µ

µN
|flat = β =

3
4

Thus, the amount of DM needed has been reduced by 30%.
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Our contribution

We do not think that we can do entirely away with DM (there are evidences of
its existence), but certainly the amount needed to explain RC can be reduced
by using full GR, what is more: since DM seems to be made up of hot, warm
and cold particles (this last one being exotic particles, not yet detected), a
reduction in the total amount may result in a significant reduction in the
proportion of one of the above spices.

Hence, the need for a new look at stationary and axisymmetric solutions,
having in mind all the problems we mentioned.

Writing the metric in terms of potentially observable quantities, so that
observational data could be fed in from the start.

Setting up new coordinate systems with a clearer geometric meaning,
and well suited to numerical calculations.
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Metric in terms of potentially observable quantities.

Metric in terms of potentially observable quantities.

Idea: Treat V (ρ, z) and Ω(ρ, z) as data (inputs in the problem). Recall
~u = N(Ω∂φ + ∂t ).

We choose coordinates xa = ρ, z, φ, t as previously, but write instead the
metric as:

gab =


a 0 0 0
0 a 0 0
0 0 b n
0 0 n c

 , bc − n2 = −ρ2

With these assumptions

V =
1
ρ

(bΩ + n) , ua =
b1/2

ρ
√

1− V 2
(0, 0,Ω, 1)
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Metric in terms of potentially observable quantities.

Exploiting the geodesic condition

Recall that u̇a = 0 as a result of the contracted Bianchi identities.

u̇a = 0 ⇒ Γa
bcubuc = 0

which boils down to

bzΩ2 + 2nzΩ + cz = 0

bρΩ2 + 2nρΩ + cρ = 0

Taking into account bc − n2 = −ρ2 and defining B ≡ ln b and
Φ ≡ (ρ+ ρV 2)/2V the above system is

nz = Bz(n − Φ)

nρ = Bρ(n − Φ) +
1
V
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...

Demanding nρz = nzρ and Bρz = Bzρ, one finally gets

b =
1− V 2

V 2

1
H ′(ρV )

, c =
n2 − ρ2

b

n =
1
2

(
1− V 2

V 2

H(ρV )

H ′(ρV )
+ ρ

1 + V 2

V 2

)
Ω = −1

2
(
H(ρV ) + ρV H ′(ρV )

)
≡ −1

2
(ρV H(ρV ))′

where H(ρV ) is an arbitrary function of its argument, and a prime indicates
differentiation w.r.t. this argument.
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The metric in terms of potentially observable quantities

Thus,

gφφ =
1− V 2

V 2

1
H ′(ρV )

,

gφt =
1
2

(
1− V 2

V 2

H(ρV )

H ′(ρV )
+ ρ

1 + V 2

V 2

)
,

gtt =
g2
φt − ρ2

gφφ
And also,

Ω = −1
2

(ρV H(ρV ))′

Therefore, the metric potentials have been expressed in terms of V (the
rotation velocity – observable), and H(ρV ) an arbitrary function of its
argument that, if Ω (the angular velocity of the fluid – observable) is given,
can be integrated out.
Recall that gzz = gρρ are fixed by the field equations.



Introduction Modeling Galaxies in GR The attempts so far What else can be done? What is left...

Metric in terms of potentially observable quantities.

The metric in terms of potentially observable quantities

Thus,

gφφ =
1− V 2

V 2

1
H ′(ρV )

,

gφt =
1
2

(
1− V 2

V 2

H(ρV )

H ′(ρV )
+ ρ

1 + V 2

V 2

)
,

gtt =
g2
φt − ρ2

gφφ
And also,

Ω = −1
2

(ρV H(ρV ))′

Therefore, the metric potentials have been expressed in terms of V (the
rotation velocity – observable), and H(ρV ) an arbitrary function of its
argument that, if Ω (the angular velocity of the fluid – observable) is given,
can be integrated out.
Recall that gzz = gρρ are fixed by the field equations.



Introduction Modeling Galaxies in GR The attempts so far What else can be done? What is left...

Metric in terms of potentially observable quantities.

The metric in terms of potentially observable quantities

Thus,

gφφ =
1− V 2

V 2

1
H ′(ρV )

,

gφt =
1
2

(
1− V 2

V 2

H(ρV )

H ′(ρV )
+ ρ

1 + V 2

V 2

)
,

gtt =
g2
φt − ρ2

gφφ
And also,

Ω = −1
2

(ρV H(ρV ))′

Therefore, the metric potentials have been expressed in terms of V (the
rotation velocity – observable), and H(ρV ) an arbitrary function of its
argument that, if Ω (the angular velocity of the fluid – observable) is given,
can be integrated out.
Recall that gzz = gρρ are fixed by the field equations.



Introduction Modeling Galaxies in GR The attempts so far What else can be done? What is left...

Metric in terms of potentially observable quantities.

The metric in terms of potentially observable quantities

Thus,

gφφ =
1− V 2

V 2

1
H ′(ρV )

,

gφt =
1
2

(
1− V 2

V 2

H(ρV )

H ′(ρV )
+ ρ

1 + V 2

V 2

)
,

gtt =
g2
φt − ρ2

gφφ
And also,

Ω = −1
2

(ρV H(ρV ))′

Therefore, the metric potentials have been expressed in terms of V (the
rotation velocity – observable), and H(ρV ) an arbitrary function of its
argument that, if Ω (the angular velocity of the fluid – observable) is given,
can be integrated out.
Recall that gzz = gρρ are fixed by the field equations.



Introduction Modeling Galaxies in GR The attempts so far What else can be done? What is left...

What is left:

1 Write down EFEs in terms of V and H(ρV ) (and/or Ω).

2 Derive the energy density µ from there.

3 Compare µ with µL, the density of the luminous matter.

4 Draw conclusions...
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