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1 Introduction

The study of electromagnetic fields 1n relativistic astrophysics has proved
to be of high relevance, however polarized matter as a source of the fields
have been studied very little in the context of the exact solutions of the
Einstein-Maxwell equations for physical objects, that 1s why we believe it
1s important to include that type of sources to the study of axially symmet-
ric disk-like configurations of matter which are solutions of the Einsten-
Maxwell field equations.



2 Field Equations And Thin Disk Solutions

An static axially symmetric spacetime with a thin disk in the surface z = 0,
gaﬁ(T,Z)ZZZQQB(T,—fZ), (1)

9a8,2(T5 2) = —gap,z(1, —2) - (2)

We assume that the metric tensor i1s continuous through the disk,

9ap] =0, 3)

with a finite discontinuity in its first normal derivative,

bas = [9ap,z] = 29as,-

z=071 >

where the reflection symmetry of the metric tensor has been used.



We assume an electromagnetic four potential A, with reflection symmetry

with respect to the surface z = 0,
AQ(T, Z) = Aoz (Ta _Z) ) (4)

Ay 2(r,z) = —A, (r,—2). (5)

As we assumed with the metric tensor, the electromagnetic four potential
1s continuous through the disk,

[Aoz] — O, (6)
with a finite discontinuity 1n its first normal derivative, expressed as
[Aoz,z] = 214047 Z|z:O+ 9 (7)

where the reflection symmetry of the potential has been used.



The Einstein-Maxwell equations for a continuum media,

Gop =Tag+Tag+T.35", (8)
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where I, 3 1s the electromagnetic tensor,
Fap = Apa — Aap (10)

and M3 18 the polarization-magnetization tensor, defined in terms of the
electric polarization vector P, and the magnetic polarization vector M,

M= Py — PPy S PHEN D i (11)

where u,, 1s the 4-velocity vector of the observer and € 1s the LeviCivita
Tensor.



The energy-momentum tensor has a component due to the matter 7%, one

due to the electromagnetic fields 7% o3 and one due to the electromagnetic

interaction with the polarized matter T’ BM :

Top =Tos +Tog+Top (12)
where
1 -
Taﬁ = FauFB — ZgozﬁFWF (13)
and

Tig" = —Fo,Mg". (14)
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Now, we write the metric tensor as

dap — g;_ﬁ@(z) T ga_ﬁ {1 e @(Z)} )
with ©(z) the Heaviside distribution, and the Einstein tensor as

Gap = GH40(2) + Gy {1 — O(2)} + Qapd(2).

Accordingly,
1
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where R,z 1s the Ricci tensor for the outside region, H,g 1s the Riccl

tensor in the disk, and H = ¢*° H 5.



Regarding that the matter distribution 1s only in z = 0,

T = r226(2), (20)
MP =TI*P§(z). 21)

where T](\)‘f stands for the energy-momentum tensor matter component in

the disk and I1®? for the polarization-magnetization tensor of the disk. In
consequence, the electric and magnetic polarization vectors of the disk can
be expressed as

2, = g, . (22)

1
M = igaﬂwnwuﬁ. (23)



The electromagnetic energy-momentum tensor

T = TSP Q(2) + T2F™ {1 - 6(2)} (24)

I =il (), (25)

where 7';?4 stands for the electromagnetic interaction tensor in the disk,

given by
ey =l Il (26)
where F‘;‘L 1s the average electromagnetic tensor through the disk,

B Fa—i— _|_Fa—
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The covariant derivatives of the electromagnetic tensor and the polarization-
magnetization tensor can be expressed as

A D A
V—gF%f 5 = (F /fﬁ) L [Fo‘ﬁ} %30(2), (23)
V=gM®P 5 =TI 6(2) + T1*%¢'(2) , (29)
with
B = J—qFf (30)

N N (31)



Then, we substitute the equations (20), (25) and (24) in the equations (8)

and (9), and obtain the electrovacuum field equations

s
ch;ﬁ:( F) )
P =0,

for z > 0and z < 0, and
Qaﬂ s 5 <=7 5 )
] = e

B
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for z = 0, which are the field equations of the disk.
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From (34) we obtain the matter energy-momentum tensor

e = Oep = g 10&E): (37)

and the surface energy-momentum tensor of the disk

Sozﬁ == /T Bdsn —~ VYzz (Qaﬁ — ngM) 9 (38)

where ds,, = /g..dz 1s the normal length to the disk.



Now, 1n the orthonormal tetrad

elt) = e~ %52, (39)
e?r) — e‘bd,?‘ : (40)
elp) = 6‘”52‘/7‘, (41)
gy =Ed (42)

the surface energy-momentum tensor can be written as
Sap = oelley’ +prelley’ +pselPed’ +pelfeg’, . (43)

where o 18 the surface energy density, p, 1s the radial pressure, py 1s the
azimuthal pressure and p, 1s the normal pressure of the disk.



3 Electrically Polarized Solution

In a conformastatic spacetime,
ds® = —e*Ydt® + e~ ¥ (dr® + r’d¢® + dz?) , (44)

where the metric function ¢ is dependent on the coordinates (7, z). For the
electromagnetic four potential we take

Ay = (—x,0,0,0) . (45)

with y depending on the coordinates (7, 2).

The only non-zero components of the polarization-magnetization tensor
are

[ = e (46)



Now, equations (32) and (33) yield the system of equations

X,Qr . 262w¢,27“ = O,
X,Qz . 262w¢72z — O,
X,r X,z — 262¢¢,T¢,z =0,

Vi -V -Vip=0.
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With equations (47), (48) and (49) we found
X =v2(e¥ —1). (51)
From equation (35) we obtain a differential equation for P
rPr .+ Pr(l—r9,) +2vV2ry , =0, (52)

whose solution 1s given by

2v/2e¥
A== Ve /mp,ze_?”dr, (53)

r

where we choose the integration constant equal to zero.



The nonzero components of the surface energy-momentum tensor in the

orthonormal tetrad

o= Sy = e’ (4¢,z + ﬂw,rpr) : (54)

Pr = S(r)(r) oY _\/iw,r€¢Pr 9 (35)

and the radial component of the polarization vector,

e
Py =— 2 / r e Vdr. (56)




On the other hand, the equation (50) can be equally expressed as
V(e %) =0, (57)

which is the Laplace equation V2U = 0, therefore we can write the metric

function as
Y = 1, (58)

with U a solution of Laplace equation dependent on the coordinates (7, z).

Accordingly, equation (58) allows us to write the physical quantities of the
disk 1n terms of the function U'.



We have

4 U ., >
— UZ_ , 7 d ’ 5
E G—UV[’ u—vwﬂ “T4 -
4U . iy
P ; Uz d ; 60
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It can be seen that, the physical features of the disk depend entirely on the
election of the solution of Laplace equation U.



4 A Particular Family Of Polarized Disks

Considering the axial symmetry of the system, we take as solution of
Laplace equation the function

- CZPZ (Z/R)
e et (62)
[=0

with C constants, P;(cos 6) the Legendre polynomials and

R=+r2+22, (63)

this solution of the Laplace equation decays at infinity, which guarantees
together with (58) that the spacetime 1s asymptotically flat.



In order to introduce the discontinuities in the metric tensor and in the

electromagnetic four potential, we apply the transformation

z = |z| +a, (64)

with a a positive constant, to the function U,,.

Accordingly, we now have

— CiP, ((|2] +a)/R)

Uig = = RI+1 )

(65)

[=0

with

R=+r2+(|z| +a)?. (66)



Let us consider the first term in equation (62),

U = —

o
R )

with 1 1s given by (66). In consequence
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(63)

(69)

(70)



Here

and we introduce dimensionless quantities through the relations

0 = O-‘(r:()) 3

Pro = pr|('r:()) :
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We reduce the possible C'y constants evaluating the agreement of the en-
ergy conditions,

o>0, (76)

o] > |pi (77)
o+p; =0, (78)

o+ pr+py+p. >0, (79)

and found that they are satisfied only if Cy = a.



We plot 1n figure 1 the dimensionless surface energy density ¢ and the

dimensionless radial pressure 7 as functions of 7 for Cy = 1.

From the plots, it can be seen that they are everywhere positive, decay

when 7 increases and their maximum occurs at the center of the disk.

Also, 1n figure 1 we plot the dimensionless radial component of the electric

polarization vector P, as a function of 7.

We found it has a singularity at the center of the disk and i1t decays when

the distance from the center 1ncreases.
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Figure 1: density &, radial pressure p, and radial polarization P, of a po-
larized disk in the model n = 0 with Cy = 1.



