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1 Introduction

The study of electromagnetic fields in relativistic astrophysics has proved

to be of high relevance, however polarized matter as a source of the fields

have been studied very little in the context of the exact solutions of the

Einstein-Maxwell equations for physical objects, that is why we believe it

is important to include that type of sources to the study of axially symmet-

ric disk-like configurations of matter which are solutions of the Einsten-

Maxwell field equations.
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2 Field Equations And Thin Disk Solutions

An static axially symmetric spacetime with a thin disk in the surface z = 0,

gαβ(r, z) = gαβ(r,−z) , (1)

gαβ,z(r, z) = −gαβ,z(r,−z) . (2)

We assume that the metric tensor is continuous through the disk,

[gαβ] = 0 , (3)

with a finite discontinuity in its first normal derivative,

bαβ = [gαβ,z] = 2gαβ,z|z=0+ ,

where the reflection symmetry of the metric tensor has been used.
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We assume an electromagnetic four potential Aα with reflection symmetry

with respect to the surface z = 0,

Aα(r, z) = Aα(r,−z) , (4)

Aα,z(r, z) = −Aα,z(r,−z) . (5)

As we assumed with the metric tensor, the electromagnetic four potential

is continuous through the disk,

[Aα] = 0 , (6)

with a finite discontinuity in its first normal derivative, expressed as

[Aα,z] = 2Aα, z|z=0+ , (7)

where the reflection symmetry of the potential has been used.
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The Einstein-Maxwell equations for a continuum media,

Gαβ = TM
αβ + TF

αβ + TFM
αβ , (8)

Fαβ ;β = Mαβ
;β , (9)

where Fαβ is the electromagnetic tensor,

Fαβ = Aβ,α − Aα,β (10)

and Mαβ is the polarization-magnetization tensor, defined in terms of the

electric polarization vector Pα and the magnetic polarization vector Mα,

Mαβ = Pαuβ − P βuα + ϵαβµνMµuν , (11)

where uα is the 4-velocity vector of the observer and ϵ is the LeviCivita

Tensor.

5



The energy-momentum tensor has a component due to the matter TM
αβ , one

due to the electromagnetic fields TF
αβ and one due to the electromagnetic

interaction with the polarized matter TFM
αβ ,

Tαβ = TM
αβ + TF

αβ + TFM
αβ , (12)

where

TF
αβ = FαµFβ

µ −
1

4
gαβFµνF

µν , (13)

and

TFM
αβ = −FαµMβ

µ . (14)
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Now, we write the metric tensor as

gαβ = g+αβΘ(z) + g−αβ {1−Θ(z)} , (15)

with Θ(z) the Heaviside distribution, and the Einstein tensor as

Gαβ = G+
αβΘ(z) +G−

αβ {1−Θ(z)}+Qαβδ(z) . (16)

Accordingly,

G±

αβ = R±

αβ −
1

2
gαβR

±, (17)

Qαβ = Hαβ −
1

2
gαβH , (18)

Hαβ =
1

2

(

bzαδ
z
β + bzβδ

z
α − bµµδ

z
αδ

z
β − gzzbαβ

)

, (19)

where Rαβ is the Ricci tensor for the outside region, Hαβ is the Ricci

tensor in the disk, and H = gαβHαβ .
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Regarding that the matter distribution is only in z = 0,

TαβM = ταβM δ(z) , (20)

Mαβ = Παβδ(z) . (21)

where ταβM stands for the energy-momentum tensor matter component in

the disk and Παβ for the polarization-magnetization tensor of the disk. In

consequence, the electric and magnetic polarization vectors of the disk can

be expressed as

Pα = uβΠβα , (22)

Mα =
1

2
εαβµνΠµνuβ . (23)
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The electromagnetic energy-momentum tensor

TαβF = TαβF

+
Θ(z) + TαβF

−

{1−Θ(z)} , (24)

TαβFM = ταβFMδ(z) , (25)

where ταβFM stands for the electromagnetic interaction tensor in the disk,

given by

ταβFM = F̄αµΠ
µβ , (26)

where F̄αµ is the average electromagnetic tensor through the disk,

F̄αµ =
Fαµ

+ + Fαµ
−

2
. (27)
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The covariant derivatives of the electromagnetic tensor and the polarization-

magnetization tensor can be expressed as

√
−gFαβ ;β =

(

F̂αβ,β

)D

+
[

F̂αβ
]

δzβδ(z), (28)

√
−gMαβ

;β = Π̂αβ,βδ(z) + Π̂αzδ′(z) , (29)

with

F̂αβ =
√
−gFαβ , (30)

Π̂αβ =
√
−gΠαβ . (31)
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Then, we substitute the equations (20), (25) and (24) in the equations (8)

and (9), and obtain the electrovacuum field equations

G±

αβ =
(

TF
αβ

)±
, (32)

F̂αβ
±,β = 0 , (33)

for z ≥ 0 and z ≤ 0, and

Qαβ = τMαβ + τFM
αβ , (34)

[

F̂αz
]

= Π̂αβ,β , (35)

Π̂αz = 0 , (36)

for z = 0, which are the field equations of the disk.

11



From (34) we obtain the matter energy-momentum tensor

TM
αβ =

(

Qαβ − τFM
αβ

)

δ(z) , (37)

and the surface energy-momentum tensor of the disk

Sαβ =

∫

TM
αβdsn =

√
gzz

(

Qαβ − τFM
αβ

)

, (38)

where dsn =
√
gzzdz is the normal length to the disk.
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Now, in the orthonormal tetrad

eα(t) = e−ψδαt , (39)

eα(r) = eψδαr , (40)

eα(φ) = eψδαφ/r , (41)

eα(z) = eψδαz , (42)

the surface energy-momentum tensor can be written as

Sαβ = σe(t)α e(t)β + pre
(r)
α e(r)β + pφe

(φ)
α e(φ)β + pze

(z)
α e(z)β , (43)

where σ is the surface energy density, pr is the radial pressure, pφ is the

azimuthal pressure and pz is the normal pressure of the disk.
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3 Electrically Polarized Solution

In a conformastatic spacetime,

ds2 = −e2ψdt2 + e−2ψ
(

dr2 + r2dφ2 + dz2
)

, (44)

where the metric function ψ is dependent on the coordinates (r, z). For the

electromagnetic four potential we take

Aα = (−χ, 0, 0, 0) . (45)

with χ depending on the coordinates (r, z).

The only non-zero components of the polarization-magnetization tensor

are

Πrt = −Πtr = Pre
ψ . (46)
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Now, equations (32) and (33) yield the system of equations

χ2
,r − 2e2ψψ2

,r = 0 , (47)

χ2
,z − 2e2ψψ2

,z = 0 , (48)

χ,rχ,z − 2e2ψψ,rψ,z = 0 , (49)

∇2ψ −∇ψ ·∇ψ = 0 . (50)
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With equations (47), (48) and (49) we found

χ =
√
2
(

eψ − 1
)

. (51)

From equation (35) we obtain a differential equation for Pr

rPr,r + Pr(1− rψ,r) + 2
√
2rψ,z = 0 , (52)

whose solution is given by

Pr = −
2
√
2eψ

r

∫

rψ,ze
−ψdr , (53)

where we choose the integration constant equal to zero.
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The nonzero components of the surface energy-momentum tensor in the

orthonormal tetrad

σ = S(t)(t) = eψ
(

4ψ,z +
√
2ψ,rPr

)

, (54)

pr = S(r)(r) = −
√
2ψ,re

ψPr , (55)

and the radial component of the polarization vector,

P(r) = −
2
√
2e2ψ

r

∫

rψ,ze
−ψdr . (56)
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On the other hand, the equation (50) can be equally expressed as

∇2
(

e−ψ
)

= 0 , (57)

which is the Laplace equation ∇2U = 0, therefore we can write the metric

function as

e−ψ = 1− U , (58)

with U a solution of Laplace equation dependent on the coordinates (r, z).

Accordingly, equation (58) allows us to write the physical quantities of the

disk in terms of the function U .
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We have

σ =
4

(1− U)2

[

U,z −
U,r

(1− U)r

∫ ∞

0
U,zrdr

]

, (59)

pr =
4U,r

r(1− U)3

∫ ∞

0
U,zrdr , (60)

P(r) =
2
√
2

(1− U)2r

∫ ∞

0
U,zrdr . (61)

It can be seen that, the physical features of the disk depend entirely on the

election of the solution of Laplace equation U .
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4 A Particular Family Of Polarized Disks

Considering the axial symmetry of the system, we take as solution of

Laplace equation the function

Un = −
n
∑

l=0

ClPl (z/R)

Rl+1
, (62)

with Cl constants, Pl(cos θ) the Legendre polynomials and

R =
√

r2 + z2 , (63)

this solution of the Laplace equation decays at infinity, which guarantees

together with (58) that the spacetime is asymptotically flat.
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In order to introduce the discontinuities in the metric tensor and in the

electromagnetic four potential, we apply the transformation

z → |z|+ a , (64)

with a a positive constant, to the function Un.

Accordingly, we now have

Un = −
n
∑

l=0

ClPl ((|z|+ a)/R)

Rl+1
, (65)

with

R =
√

r2 + (|z|+ a)2 . (66)
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Let us consider the first term in equation (62),

U0 = −
C0

R
, (67)

with R is given by (66). In consequence

σ̄ =
σ

σ0
=

(

1 + C̄0

R̄0 + C̄0

)3

, (68)

p̄r =
pr
pr0

=
1

R̄0

(

1 + C̄0

R̄0 + C̄0

)3

, (69)

P(r) =
−2

√
2C̄0R̄0

(R̄0 + C̄0)2r̄
. (70)
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Here

σ0 = σ|(r=0) , (71)

pr0 = pr|(r=0) . (72)

and we introduce dimensionless quantities through the relations

r = ar̄ , (73)

C0 = aC̄0 , (74)

R0 = aR̄0 . (75)

23



We reduce the possible C0 constants evaluating the agreement of the en-

ergy conditions,

σ ≥ 0 , (76)

|σ| ≥ |pi| , (77)

σ + pi ≥ 0 , (78)

σ + pr + pφ + pz ≥ 0 , (79)

and found that they are satisfied only if C0 = a.
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We plot in figure 1 the dimensionless surface energy density σ̄ and the

dimensionless radial pressure r̄ as functions of r̄ for C̄0 = 1.

From the plots, it can be seen that they are everywhere positive, decay

when r̄ increases and their maximum occurs at the center of the disk.

Also, in figure 1 we plot the dimensionless radial component of the electric

polarization vector P̄r as a function of r̄.

We found it has a singularity at the center of the disk and it decays when

the distance from the center increases.
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Figure 1: density σ̄, radial pressure p̄r and radial polarization P̄r of a po-

larized disk in the model n = 0 with C̄0 = 1.
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