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Motivation:  the 
Ostrogradsky’s instability

Why are most of the laws in physics represented by 
second-order differential equations? 

Examples: 

Newton’s second law. 

Maxwell’s equations. 

Einstein’s field equations.



The answer relies on the Ostrogradsky’s instability (Mem. Ac. 
St. Petersburg 1850) 

Let’s think first of a mechanical system with just one degree of 
freedom: 

                                                                  . 

The Euler-Lagrange equation leads to a second-order differential 
equation: 

                                                                          , 

     as long as the non degeneracy condition is satisfied, i.e.,  

            must depend on     . 
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The non degeneracy condition is equivalent to saying 
that     does not disappear in the Lagrangian by 
partial integrations. 

Thus,                                                                    . 

Let’s look for the Hamiltonian:  the two canonical 
variables are usually taken as 

                                                                  , 

The non degeneracy condition guarantees that     can 
be written in terms of      and     :   

q̇

q̈ = F(q, q̇) �! q(t) = Q(t, q0, q̇0)

Q P

q̇ = v(Q,P )

Q ⌘ q, P ⌘ @L
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Therefore,  

                                                                                             . 

With these canonical variables, the canonical evolution 
equations reproduce the inverse phase space 
transformation and the Euler-Lagrange equation: 

                                                            , 

                                                        . 

We can conclude then that the Hamiltonian is the energy 
up to canonical transformations.

H(Q,P ) ⌘ P q̇ � L

= Pv(Q,P )� L(Q, v(Q,P ))
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Ṗ = �@H

@Q
=

@L

@q



Observing the Hamiltonian 

we conclude that it, in principle, isn’t 
linear either in       or in     . 

It, in principle, doesn’t suffer from the 
Ostrogradsky’s instability (the energy is, 
in principle, bounded from below). 

PQ

H(Q,P ) = Pv(Q,P )� L(Q, v(Q,P ))



What about if the Lagrangian depends also 
on   ? 

The equation of motion is, therefore, higher 
than second order 

                                                        , 

                                                                         , 

as long as the non degeneracy condition    
is satisfied, i.e.,       must depend on      . 
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Let’s look for the Hamiltonian.  We require 
four canonical variables.  The Ostrogradsky’s 
choice is the following: 

                                                          , 

                                             . 

The non degeneracy condition guarantees 
that     can be written in terms of      ,      and 
: 

Q1 ⌘ q, P1 ⌘ @L

@q̇
� d

dt
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@q̈

Q2 ⌘ q̇, P2 ⌘ @L

@q̈

q̈ Q1 Q2 P2

q̈ = a(Q1, Q2, P2)



The Hamiltonian is therefore 

                                                                                

As before, the canonical evolution 
equations reproduce the inverse phase 
space transformations and the Euler-
Lagrange equation: 

H(Q1, Q2, P1, P2) ⌘
2X
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Piq
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= P1Q2 + P2a(Q1, Q2, P2)� L(Q1, Q2, a(Q1, Q2, P2))
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Ṗ1 = � @H

@Q1
=

@L

@q
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We can conclude then that the Hamiltonian is the 
energy up to canonical transformations. 

Observing the Hamiltonian 

     we observe that it is linear in      .   

Very bad!!:  it suffers from the Ostrogradsky’s 
instability (the energy is not bounded from below 
- see the blue curve).  

P1

H(Q1, Q2, P1, P2)

= P1Q2 + P2a(Q1, Q2, P2)� L(Q1, Q2, a(Q1, Q2, P2))



It seems to be that there’s no any other 
way:  equations of motion must be second 
order! 

What happens if we include more 
derivatives in the Lagrangian?:  they 
only aggravate the problem.



Scalar Galileons
Motivation:  bottom-up approach to fundamental physics (and to do 
cosmology as well!). 

G. W. Horndeski in 1974 (Int. J. Theor. Phys. 1974) was able to obtain 
the most general scalar-tensor theory with second-order field equations 
in curved four-dimensional spacetime. 

Horndeski was largely ignored until 2009 when his work was 
rediscovered in the context of what is now called Galileons. 

When Horndeski, in 1981, took a sabbatical year in the Netherlands, he 
saw a van Gogh exhibition.  He was so deeply moved that he left physics 
and became an artist. 

Nowadays, Horndeski’s work in mathematical physics is highly cited and 
his artwork is highly appreciated (he continues doing some physics).



Galileons were introduced by Nicolis et. al. (Phys. Rev. D 2009) inspired 
from the decoupling limit of the Dvali-Gabadadze-Porrati model. 

Galileons are those scalar fields     in flat spacetime whose  

1. Lagrangian is degenerate but, still, contains derivatives of     of order 2 
or less. 

2. field equations are polynomial in second-order derivatives of     .    

3. field equations do not contain undifferentiated or only once 
differentiated      .   

4. field equations do not contain derivatives of order strictly higher than 
2. 

By the way, why are these scalar fields called Galileons?:  because the 
whole Lagrangian enjoys a “Galilean” symmetry

⇡

⇡

⇡

⇡ �! ⇡ + bµx
µ + c

⇡



Let’s analyze a bit more the conditions 

1. Lagrangian is degenerate but, still, contains derivatives of     of 
order 2 or less.  (This is not completely necessary in order to get 
purely second-order field equations (Deffayet et. al., Phys. Rev. D 
2010).) 

2. field equations are polynomial in second-order derivatives of     .   

3. field equations do not contain undifferentiated or only once 
differentiated      .   

4. field equations do not contain derivatives of order strictly 
higher than 2.  (The Ostrogradsky’s instability can be avoided 
even in the presence of higher-order field equations if the non-
degeneracy condition is violated (Gleyzes et. al., Phys. Rev. Lett. 
2015, Langlois et. al., JCAP 2016)).

⇡

⇡

⇡



What’s the Lagrangian for a single Galileon in 
D dimensions? 

                                                                              , 

    where  

                                     

    and                                         . 

    indicates the number of times of 
appearances:

LGal,1
N = (Aµ1...µn+1⌫1...⌫n+1

(2n+2) ⇡µn+1⇡⌫n+1)⇡µ1⌫1 ...⇡µn⌫n

Aµ1µ2...µm⌫1⌫2...⌫m

(2m) ⌘ 1

(D �m)!
✏µ1µ2...µm�1�2...�D�m✏⌫1⌫2...⌫m

�1�2...�D�m

⇡µ ⌘ @µ⇡, ⇡µ⌫ ⌘ @µ@⌫⇡

N ⌘ n+ 2 (� 2), N  D + 1

N ⇡



Explicitly, if we are considering 4 
dimensions, the Galileon Lagrangian 
contains four pieces: 
LGal,1
2 = �⇡µ⇡µ

LGal,1
3 = ⇡µ⇡⌫⇡µ⌫ � ⇡µ⇡µ⇤⇡

LGal,1
4 = �(⇤⇡)2(⇡µ⇡

µ) + 2(⇤⇡)(⇡µ⇡
µ⌫⇡⌫)

+(⇡µ⌫⇡
µ⌫)(⇡⇢⇡

⇢)� 2(⇡µ⇡
µ⌫⇡⌫⇢⇡

⇢)
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5 = �(⇤⇡)3(⇡µ⇡

µ) + 3(⇤⇡)2(⇡µ⇡
µ⌫⇡⌫)

+3(⇤⇡)(⇡µ⌫⇡
µ⌫)(⇡⇢⇡

⇢)

�6(⇤⇡)(⇡µ⇡
µ⌫⇡⌫⇢⇡

⇢)� 2(⇡ ⌫
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⌫ ⇡ µ
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�3(⇡µ⌫⇡
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⇢�⇡�) + 6(⇡µ⇡
µ⌫⇡⌫⇢⇡

⇢�⇡�)



By partial integrations, we can get an 
equivalent Lagrangian: 

                                                                       , 

     where                   . 

By means of this Lagrangian, we can built the 
“generalized Galileons”. 

The generalized Galileons are those scalar 
fields in flat spacetime that have field equations 
containing derivatives or order 2 or less.

LGal,3
N = XAµ1...µn⌫1...⌫n

(2n) ⇡µ1⌫1 ...⇡µn⌫n

⇡

X ⌘ ⇡µ⇡
µ



Its construction is very easy (Deffayet 
et. al., Phys. Rev. D 2011).  We just have 
to multiply the previous Lagrangian by 
arbitrary functions of     and    .  

The whole Lagrangian is the following: 

                                               , 

    where

⇡ X

L =
D�1X

n=0

L̃n{fn}

L̃n{fn} = fn(⇡, X)LGal,3
N=n+2

= fn(⇡, X)(XAµ1...µn⌫1...⌫n

(2n) ⇡µ1⌫1 ...⇡µn⌫n)



Explicitly, if we are considering 4 dimensions, 
the generalized Galileon Lagrangian contains 
four pieces: 

L̃3{f3} = �f3(⇡, X)X((⇤⇡)3 � 3(⇤⇡)(⇡µ⌫⇡
µ⌫) + 2(⇡ ⌫

µ ⇡ ⇢
⌫ ⇡ µ

⇢ ))

L̃2{f2} = �f2(⇡, X)X((⇤⇡)2 � (⇡µ⌫⇡
µ⌫))

L̃1{f1} = �f1(⇡, X)X⇤⇡

L̃0{f0} = �f0(⇡, X)X



Finally, we can covariantize the previous Lagrangian, 
so that we obtain the most general Lagrangian 
involving a scalar field and gravity, containing second-
order derivatives or less of the scalar field and the 
metric, that leads to field equations of second order or 
less (Deffayet et. al., Phys. Rev. D 2009 and 2011). 

Replacing standard derivatives by covariant ones leads 
to higher-order field equations. 

Therefore, some counterterms will be needed. 

It is important to guarantee that the tensor sector 
contains the correct number of propagating degrees of 
freedom, i.e. 2.



The Lagrangian in four dimensions is found to be (the first term in 
the Lagrangian can be found in (Woodard, Lect. Notes Phys. 2007)) 

                                                                                    

                                                                                              , 

     where 

     with                           .

LCov

3 = G3(⇡, X)⇤⇡

LCov

2 = G2(⇡, X)

LCov
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It was shown by Kobayashi et. al. (Prog. Theor. Phys. 
2011) that the previous construction is equivalent 
to the Horndeski’s Lagrangian. 

If we want to build cosmological models that, in 
order to model inflation, dark energy, etc., make use 
of a scalar field, we must consider a generalized and 
covariantized Galileon (or the theories beyond 
that).  This will avoid the Ostrogradsky’s 
instability!! 

Effectively, many of the, well behaved, inflationary 
models presented in the literature incorporate 
Galileon fields.  



Vector Galileons (no 
gauge symmetries)

In cosmology, vector fields are also possible:  because 
of their inherent privileged directions, they can 
generate anisotropy in the expansion and in the 
statistical distribution of fluctuations (stripes in 
the CMB map) (Dimopoulos et. al., JCAP 2009). 



Horndeski, in 1976 (J. Math. Phys. 1976), considered an Abelian vector field, 
with an action including sources, and with the assumption of recovering the 
Maxwell’s equations in flat spacetime. 

Deffayet et. al. (Phys. Rev. D 2010) didn’t invoke gauge invariances but, instead, 
studied several vector fields whose field equations are purely second-order. 

Fleury et. al. (JCAP 2014) coupled an Abelian vector field with a scalar field in 
the framework of Einstein’s gravity. 

Deffayet et. al. (JHEP 2014) found a no-go theorem for an Abelian vector field in 
flat spacetime whose field equation is purely second-order. 

Heisenberg (JCAP 2014) studied a vector field, in curved spacetime, without 
gauge invariances. 

Heisenberg’s work turned out not to be complete.  My work (Allys et. al., JCAP 
2016a and JCAP 2016b) completes Heisenberg’s work (see also Heisenberg et. al., 
Phys. Lett. B 2016). 

Heisenberg et. al. (Phys. Lett. B 2016) and Kimura et. al. (2016) built the vector-
tensor theories where the non degeneracy condition is violated. 

Allys et. al. (Phys. Rev. D 2016) built the vector-tensor theories with a non-
Abelian SU(2) global gauge symmetry.



Helmholtz decomposition tells us that 

    where                 .  

The longitudinal mode of the vector field 
is the scalar field    .  

If     is a vector Galileon, then    is a 
scalar Galileon.

Aµ = @µ⇡ + Āµ

@µĀµ = 0

⇡

Aµ ⇡



Let’s start in flat four-dimensional spacetime. 

We want to construct a Lagrangian for a 
vector field       that contains derivatives of     
of order 2 or less. 

That implies immediately that the Lagrangian 
must contain derivatives of      of order 1 or 
less.  The field equations for      are, therefore, 
second order. 

There must be only three propagating degrees 
of freedom for the vector field.

⇡Aµ

Aµ

Aµ



Procedure of investigation 

1. We list all the possible terms which can be written as contractions 
of              first-order derivatives of      .  

2. These test Lagrangians are linearly combined to provide the most 
general term at a given order     . 

3. The Hessian, for each test Lagrangian, is computed.  The necessary 
requirement                 for all                           is used to derive 
relations among the coefficients of the linear combination, and to 
finally obtain the relevant terms that can give rise only three 
propagating degrees of freedom. 

4. All the redundant Lagrangias (equivalent to others up to a total 
derivative) are removed. 

5. Any term leading to a non-trivial dynamics for the scalar part that 
would be nonvanishing should be then set to zero in order to comply 
with the requirement that the scalar action is that provided by the 
Galileon.

(n� 2) Aµ

n

H0µ = 0 µ = 0, · · · , 3



I will just show the procedure to find      .  

1. Test Lagrangians: 

L6

Ltest
6,1 = (@ ·A)4 Ltest

6,2 = (@ ·A)2 (@�A⇢@
�A⇢)

Ltest
6,3 = (@ ·A)2 (@⇢A�@

�A⇢) Ltest
6,4 = (@ ·A) (@⌫A�@

⇢A⌫@�A⇢)

Ltest
6,5 = (@ ·A) (@⇢A⌫@�A⇢@

�A⌫) Ltest
6,6 = (@µA�@

⌫Aµ@⇢A⌫@
�A⇢)

Ltest
6,7 = (@⌫Aµ@⇢A�@

⇢Aµ@
�A⌫) Ltest

6,8 = (@⌫A
�@⌫Aµ@⇢A�@

⇢Aµ)

Ltest
6,9 = (@⌫Aµ@⇢Aµ@�A⇢@

�A⌫) Ltest
6,10 = (@⌫Aµ@

⌫Aµ)2

Ltest
6,11 = (@µA⌫@

⌫Aµ) (@�A⇢@
�A⇢) Ltest

6,12 = (@µA⌫@
⌫Aµ) (@⇢A�@

�A⇢)



2.  Linear combination of test Lagrangians 

3.  Hessian computation and imposition of the requirement   

This leads to 

L6 =
12X

k=1

xk Ltest
6,k ,

H0µ = 0

Hµ⌫
6 =

@2L6

@(@0Aµ)@(@0A⌫)
,

LGal
6 =(@ ·A)4 � 2 (@ ·A)2 [(@⇢A�@

�A⇢) + 2 (@�A⇢@
�A⇢)] + 8 (@ ·A) (@⇢A⌫@�A⇢@

�A⌫)� (@µA⌫@
⌫Aµ)2

+4 (@⌫Aµ@
⌫Aµ) (@⇢A�@

�A⇢)� 2 (@⌫A
�@⌫Aµ@⇢A�@

⇢Aµ)� 4 (@⌫Aµ@⇢Aµ@�A⇢@
�A⌫)

LPerm
6 = (@ ·A)2 Fµ⌫Fµ⌫ � (@⇢A�@

�A⇢)Fµ⌫Fµ⌫ + 4 (@ ·A) @⇢A⌫@�A⇢F⌫�

+@µA⌫F
⌫
⇢F

⇢
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�
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�
µ

LFF ·FF = (Fµ⌫F
µ⌫)2

LFFFF = Fµ
⌫F

⌫
⇢F

⇢
�F

�
µ



4.  Setting to zero any term that leads to 
non-trivial dynamics for the scalar field. 

        leads to a higher than second-order 
field equation for     ;  therefore, it must be 
set to zero. 

The other terms vanish when going to the 
scalar sector.

LGal
6

⇡



The final Lagrangian in flat spacetime is the 
following: 

     with 

    where                     and

L2 = f2(Aµ, Fµ⌫ , F̃µ⌫),

Lgen(Aµ) = �1

4
Fµ⌫F

µ⌫ +
6X

n=2

Ln ,

L3 = f3 (X)Sµ
µ ,

L5 = f5 (X)
⇥
(Sµ

µ)3 � 3(Sµ
µ)S⇢

�S�
⇢ + 2S⇢

�S�
�S�

⇢
⇤
+ g5 (X) F̃↵µF̃ �

µS↵� ,

Sµ⌫ ⌘ @µA⌫ + @⌫Aµ .X ⌘ AµA
µ ,

L6 = g6 (X) F̃↵�F̃µ⌫S↵µS�⌫ ,

L4 = f4 (X)
⇥
(Sµ

µ)2 � S⇢
�S�

⇢
⇤
+ g4(X)AµA�F̃µ⌫S

�⌫ ,



Let’s go now to curved four-dimensional spacetime. 

The procedure of investigation is exactly equal to the 
described before but we have to take into account the 
following aspects: 

1. The standard derivatives must be replaced by covariant 
ones. 

2. This can lead to higher than second-order field equations.  
Therefore, some counterterms must be added. 

3. We have to include couplings between the vector field or 
the field strength tensor with the curvature that vanish 
when going to flat spacetime.



The final Lagrangian in curved spacetime is 
the following: 

     with 

L2 = f2(Aµ, Fµ⌫ , F̃µ⌫),

LCurv = fCurv
1 Gµ⌫A

µA⌫ + fCurv
2 (X)Lµ⌫⇢�F

µ⌫F ⇢�,

Lgen(Aµ) = �1

4
Fµ⌫F

µ⌫ + LCurv +
6X

n=2

Ln ,

L3 = f3 (X)Sµ
µ ,

L4 = f4(X)R� 2f4,X (X)
⇥
(Sµ

µ)2 � S⇢
�S�

⇢
⇤
+ g4(X)AµA�F̃µ⌫S

�⌫ ,

L5 = f5(X)Gµ⌫S
µ⌫ + 6f5,X (X)

⇥
(Sµ

µ)3 � 3(Sµ
µ)S⇢

�S�
⇢ + 2S⇢

�S�
�S�

⇢
⇤

+g5(X)F̃↵µF̃ �
µS↵� ,

L6 = g6 (X) F̃↵�F̃µ⌫S↵µS�⌫ ,



The four-rank divergence-free tensor           is 

The use of divergence-free tensors permits us 
to avoid higher-order derivatives of the metric 
in the equations of motion. 

One interesting aspect of the whole Lagrangian 
is the appearance of parity-violating terms 
(those that involve odd copies of        ).  They 
can lead to observational signatures in the 
CMB.

Lµ⌫⇢�

Lµ⌫⇢� = 2Rµ⌫⇢� + 2(Rµ�g⇢⌫ +R⇢⌫gµ� �Rµ⇢g⌫� �R⌫�gµ⇢) +R(gµ⇢g⌫� � gµ�g⇢⌫).

F̃µ⌫



If we want to build cosmological models 
that, in order to model inflation, dark 
energy, etc., make use of a vector field, we 
must consider a generalized and 
covariantized vector Galileon (or the 
theories beyond that).  This will avoid the 
Ostrogradsky’s instability!!



However, we still need to consider (with or without 
gauge invariances): 

Couplings with a scalar field (e.g., the        model 
(Watanabe et. al., Phys. Rev. Lett. 2009)). 

Or a rapidly oscillating vector field (e.g. the vector 
curvaton scenario (Dimopoulos, Phys. Rev. D 
2006)). 

Or the multi-vector field case (e.g. the gauge-flation 
model (Maleknejad et. al., Phys. Lett. B 2013)). 

This is to avoid the highly anisotropization that 
produces just one vector field.

fF 2



Non-Abelian vector 
Galileons

We are working in the framework of special unitary global gauge 
transformations that, of course, are part of a simple Lie group. 

A gauge vector field then transforms as 

 where      represents the amount of the transformation and         
represents  the matrices that conform the adjoint representation of the 
Lie group: 

The         are the structure constants of the Lie group: 

 The      are the generators of the gauge transformations.

�Aa
µ = i✏b(TA

b )acA
c
µ,

✏b TA

fa
bc

Ta

(TA
c )ab = �ifa

bc.

[Ta, Tb] = ifabcT
c.



We are working with global gauge 
transformations since the gauge field 
transforms in this case according to the 
adjoint representation of the Lie group.



Following the same strategy as in the 
Abelian case, and considering only up to 
six space-time indices, we have obtained 
the following Lagrangian: 

     where                           and

L2 = f̃(Aa
µ, F

a
µ⌫ , F̃

a
µ⌫).

L3
4 = G̃b

µ�A
µ
aA↵bS

↵�a,
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
(r ·Aa) (r ·Aa)� (rµA

⌫
a)(rµAa
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1

4
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�

+2(Aa ·Ab)


(r ·Aa)

�
r ·Ab

�
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⌫a)(rµAb
⌫) +

1

2
Aa ·AbR

�
,

L2
4 = (Aa ·Ab)


(r ·Aa)

�
r ·Ab

�
� (rµA

⌫a)(rµAb
⌫) +

1

4
Aa ·AbR

�

+(AµaA⌫b)


(rµA

↵
a ) (r⌫A↵b)� (r⌫A

↵
a ) (rµA↵b)�

1

2
A⇢

bA
�bRµ⌫⇢�

�
,

Ga
µ⌫ ⌘ @µA

a
⌫ � @⌫A

a
µ Sa

µ⌫ ⌘ @µA
a
⌫ + @⌫A

a
µ.



We have in addition 

    

Lcurv
1 = Gµ⌫A

µaA⌫
a,

Lcurv
2 = Lµ⌫⇢�F

µ⌫
a F a

µ⌫ ,

Lcurv
3 = Lµ⌫⇢�✏abcF

µ⌫aA⇢bA�c,

Lcurv
4 = Lµ⌫⇢�A

µaA⌫bA⇢
aA

�
b .



Finally, we will be in the very interesting position 
of finding out cosmologically viable models with 
either vanishing or very tiny levels of anisotropy, 
in agreement with observational data (e.g., the 
gauge-flation model (Maleknejad et. al., Phys. Lett. 
B 2013)). 

We are currently working in the cosmological 
consequences of the terms                       and                                                       

    (Navarro et. al., work in progress). 

At the fundamental level, we will be approaching 
more to the challenge of merging cosmology and 
particle physics.

Gµ⌫A
µaA⌫

a,
Lµ⌫⇢�A

µaA⌫bA⇢
aA

�
b
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