A Modelers Opacity Wish List

Regner Trampedach^{1,2,3}

¹Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 USA; rtrampedach@SpaceScience.org

²Stellar Astrophysics Centre, Dept. of Physics and Astronomy, Ny Munkegade 120, Aarhus University, DK–8000 Aarhus C, Denmark

³Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Boulder, USA

Abstract. At the Aug. 1–4, 2017 Workshop on Astrophysical Opacities, several attendees voiced their interest in a list of absorption data, that are missing from or inadequate in current models of astrophysical objects. This is a wish list by modelers, meant as motivation and inspiration for experimentalists and theoreticians alike.

1. The Wish List

Table 1 is the opacity wish list as I have compiled from the responses I have received from both the workshop attendees and from several 1D and 3D stellar atmosphere groups. The first column lists the absorber system, the second column lists the absorption mechanism: Rotational, vibrational and electronic transitions in molecules, bound-bound (bb) and bound-free (bf) electronic transitions in atoms/ions, and collision induced absorption (CiA) from transient dipoles by pairs of passing particles. The third and fourth columns list the requests for laboratory experiment and/or theoretical calculations, and the last column lists the kind of objects for which modeling will improve with updated atomic/molecular physics.

1.1. Some Recent and Pending Calculations

A new high-temperature (up to 1 500 K) line-list for acetylene (HCCH or C_2H_2) has been published by Lyulin & Perevalov (2017), with several experimental spectra cited. Chubb et al. (2017) performed a critical compilation of measured spectra and derived rovibrational parameters for acetylene.

Calculations of the collision-induced-absorption has been carried out by Karman et al. (2015) 50–330 μ m and Hartmann et al. (2017) at 2.05–2.3 μ m, but only for room-temperature and below. Experimental spectra are cited in both papers.

The ExoMol (Yurchenko & Tennyson 2012, and elsewhere in these proceedings) team is very productive, and has already addressed a great number of requests from the community, notably HCN/HNC by Barber et al. (2014); NH₃ by Yurchenko et al. (2011), with updates expected early 2018. In addition, an ExoMol calculation of C_2H_2

Absorber	Mechanism	Exp.	Calc.	For objects
CH_2, C_3H	Rot+vib+e	Х	Х	Cool star/C-star atm.
CaOH, LaO, YO	Rot+vib+e	Х	Х	Cool dwarf atm.
ScO, TiS, ZrS				-
C_2H^a	Rot+vib		Х	C-star atm.
N_2 - H_2 , N_2 - He , N_2 - Ne	CiA		Х	M-dwarf atm.
N_2 - N_2 , H_2 - Ne				_
$H-H^b$	CiA		X	Cool dwarf atm.
O, Fe-peak, Zn, Pb ^c	bb, bf	Х	Х	Stars in general

Table 1.	The o	nacity	wish	list.
14010 1.	1110 0	pacity	** 1011	mot.

^{*a*}No data are currently available for C₂H.

^{*b*}This is a request for an update of the old Doyle (1968) result, and to match it to the red end of Allard et al. (1998)'s Ly α satellites from H-H collisions.

^cCompleteness is important for non-LTE calculations. Neutral atoms have highest priority.

is slated to be published by the first half of 2018, and C_3 should be completed later that year.

Acknowledgments. RT acknowledges funding from NASA grant NNX15AB24G. Funding for the Stellar Astrophysics Centre is provided by The Danish National Research Foundation (Grant DNRF106).

References

Allard, N. F., Drira, I., Gerbaldi, M., Kielkopf, J. F., & Spielfiedel, A. 1998, A&A, 335, 1124

- Barber, R. J., Strange, J. K., Hill, C., Polyansky, O. L., Mellau, G. C., Yurchenko, S. N., & Tennyson, J. 2014, MNRAS, 437, 1828
- Chubb, K. L., Joseph, M., Franklin, J., Choudhury, N., Furtenbacher, T., Csàszàr, A. G., Gaspard, G., Oguoko, P., Kelly, A., Yurchenko, S. N., Tennyson, J., & Sousa-Silva, C. 2017. 1709.03470
- Doyle, R. O. 1968, ApJ, 153, 987
- Hartmann, J.-M., Boulet, C., & Toon, G. C. 2017, Journal of Geophysical Research: Atmospheres, 122, 2419
- Karman, T., Miliordos, E., Hunt, K. L. C., Groenenboom, G. C., & van der Avoird, A. 2015, The Journal of Chemical Physics, 142, 084306 (JChPh Homepage):1
- Lyulin, O. M., & Perevalov, V. I. 2017, J. Quant. Spectrosc. Radiat. Transfer, 201, 94

Yurchenko, S. N., Barber, R. J., & Tennyson, J. 2011, MNRAS, 413, 1828

Yurchenko, S. N., & Tennyson, J. 2012, in European Conference on Laboratory Astrophysics, edited by C. Stehlé, C. Joblin, & L. d'Hendecourt (EDP Sciences), no. 58 in EAS Publications, 243