Caribbean MAGIC: Enhancing Collaboration in Research and Education

April 12, 2017

John Charlery University of the West Indies john.charlery@cavehill.uwi.edu

Caribbean Climate Modelers Group:

- Climate Studies Group Mona, Department of Physics, UWI, Mona, Jamaica.
- Dept. of Computer Science, Mathematics and Physics, UWI, Cave Hill, Barbados.
- Instituto de Meteorología de la República de Cuba, (INSMET) Habana, Cuba.
- Department of Infrastructure, Antom de Kom University of Suriname
- Caribbean Community Climate Change Centre, Belize
 Newer partners:
 - Université des Antilles, Guadeloupe.
 - UWI, St Augustine, Trinidad.

Objective :

Downscale global and regional climate model outputs to local level.

Generate future climate scenarios at the regional and local-scale through downscaling, using the Special Report on Emission Scenarios (SRES) and Representative Concentration Pathways (RCPs) data with other downscaling techniques.

Broad agreement with IPCC-WG1 assessment report.

Temperature:

 Annual temperature increases by end of the 21st century: range from 1.4°C to 3.2°C (median of 2.0°C);
 Increase in SSTs;
 Increase in number of very warm days.

Rainfall:

Models project decreases in annual precipitation but increase in intensity (up to 20% by 2050);
 Reduced length of rainy season 7 - 8% by 2050;
 Increased length of dry season 6 - 8% by 2050.

General drying across the Caribbean basin: The decreases in rainfall range from 25 to 50% depending on the scenario and section of the Caribbean basin

The exception to the overall drying trend is in the far northern Caribbean, including western Cuba and the southern Bahamas – all are up to 25% wetter under the scenarios.

- The effect of climate change appears to enhance the existing climatic pattern:
 - Making the wet and dry zones wetter and drier respectively, during the first 4 – 6 months of the year.
 - In May to October the entire Caribbean is up to 25% drier.
 - The changes in average rainfall show a pronounced north-south gradient in rainfall change during the January to April dry season.
 - Indicates summer drying to become more severe during the wet season.

Rainfall change over the Eastern Caribbean

 More intense and longer droughts observed since the 1970s.

Statistically significant summer drying trend for the Caribbean during June - August, based on the observed data.

 Very likely occurrence of more intense rainfall events, but decreases in annual precipitation.

Trend is projected to continue throughout the 21st Century.

Warmer Sea Temperatures Result In Coral Bleaching And Mortality

- In 1998 coral reefs around the world suffered the most extensive and severe bleaching and subsequent mortality in modern record.
- In the same year, tropical sea surface temperatures were the highest in modern record, topping off a fifty year trend for some tropical oceans.
- The repercussions of the 1998 mass bleaching and mortality events will continue to be far reaching in time and space.

Jan Feb Mar May Jun Apr Aug Sep Jul Nov Dec Oct 27 29 33 28 30 31 32

Caribbean MAGIC: Enhancing Collaboration in R and E

Sea Surface Temperature 1985 – 2000 (AVHRR)

Projected Sea Surface Temperature 2050 – 2059

Projected Sea Surface Temperature 2090 – 2099

Projected Sea Surface Temperature 2000 – 2100

- Temperature observations and model projections for the caribbean are consistent with global trends.
- In 19th Century, air and sea surface temperature changes in the Caribbean have followed the global trend, though the rate of increase was slightly lower than global mean.
- Very high probability that Caribbean air and SSTs will continue to increase. Rate/amount of increase depends on GHG emissions.

Temperature Projections:

- Higher max and min temperatures.
- Number of very warm days and nights increasing.
- Number of very cool days and nights decreasing.

Annual Mean Temperature Anomaly

Temperature Difference

Temperature Difference

Sea Level Rise

Higher H₂O Levels → Higher Wave Amplitude → Increased Wave Energy

Coastal vulnerability assessments for Barbados, Guyana and Grenada (CPACC Project) show that **elevated sea level amplifies coastal erosion.**

Sea Level Rise

- In Trinidad, sea level has been rising at rate of 8-10 mm/yr. during the past 20 years.
 Some beaches are retreating by approx. 1.0 m/yr.
- Model runs and observed data project that accelerated beach erosion will be a major challenge in the Caribbean.

While some present-day erosion is man-induced (*sand mining*, reef degradation, *etc.*), empirical studies show that SLR is a significant contributory factor.

Sea Level Rise

Banana Bay Beach, Southeast Peninsula, after Hurricane Luis, 1995

22

elpe139:~xy_hurr.gs

Key Observations from the IPCC's AR

Temperature trend from actual observations:
 "Warming of the climate system is "unequivocal".

Changing rainfall patterns:

Increases of <u>both</u> drought and heavy precipitation events.

Sea level rise:

Sea level rose at an average rate of about 1.8 mm/year during the years 1961-2003. Since 2003, the average rate of annual increase has almost doubled.

Key Observations from the IPCC's AR

Hurricane Activities

- There has been an increase in hurricanes_in the North Atlantic since the 1970s, and that increase correlates with increases in sea surface temperature.
- The observed increase in hurricane intensity is larger than climate models predict for the sea surface temperature changes we have experienced.

Cause

 Unmistakable evidence that the earth's temperature is rising and attributable to anthropogenic activities – Green House Gases

So where does that put us?

Proposal for Collaboration :

Techniques for climate data reconstruction;
 Models' testing and comparison (errors, biases, etc);

Rainfall distribution and behavior. Identifying where exceptions and special cases seem to be developing. Trends, variability, intensities, etc.

Proposal for Collaboration :

Hazard potentials (flooding, desertification, etc);

Development of indices;

Temperature (everything about it);

Caribbean SSTs – impacts on marine life;

Projected return periods of events' types;

Proposal for Collaboration :

Identification of new developing behaviors;

Caribbean responses in the new climate (very broad – multiple questions);

Projected Impacts! (very broad – multiple sectors, multiple questions);

The New player:

Sargassum Moss (Sea Weed)

Thank

You!