Observational Astronomy \& Data Reduction

Lecture 6:

Photometry - the basics

Karín Menéndez-Delmestre Observatório do Valongo
I. Basics Concepts in Observational Astronomy:

- Telescopes
- coordinate systems

Syllabus

- Image Quality
II. Signal and Sources of Noise
- Detectors
- Poisson statistics
- shot noise
- sky
- Read noise
- dark current
III. Observing Strategies
\& Planning your observing night
IV. Basics of Data Reduction
- Bias, Flats, Darks
- What, Why, When, How long and How many
V. Data Reduction
- Simple arithmetics!
- Bringing in the computer tools*
- Using basic IRAF routines or Python
VI. Basic Aperture Photometry

Photometry

- Objetive:
\rightarrow measure light from a point source (mag)
\rightarrow measure surface brightness from an extended source
(mag/arcsec${ }^{2}$)

Photometry

- Objetive:
\rightarrow measure light from a point source (mag)
\rightarrow measure surface brightness from an extended source
(mag/arcsec$\left.{ }^{2}\right)$

Photometry

- Objetive:
\rightarrow measure light from a point source (mag)
\rightarrow measure surface brightness from an extended source

http://ned.ipac.caltech.edu/level5/March10/Walcher/Walcher2.html

Photometry

- Objetive:
\rightarrow measure light from a point source
\rightarrow measure surface brightness from an extended source
- Can think of it as extremely low-resolution spectroscopy:
- Wide-field photometry allows us to build the SED of hundreds of sources at the same time

Filters: broad, medium, narrow

- broad-band: 100 nm

Filters: broad, medium, narrow

- broad-band: 100 nm
- intermediate:
- 10-50 nm
- narrow-band:
- $0.05-10 \mathrm{~nm}$

Filters: broad, medium, narrow

- broad-band: 100 nm
- intermediate:
- 10-50 nm
- narrow-band:
- $0.05-10 \mathrm{~nm}$
\rightarrow narrow-band filters are typically designed to capture photons from a given emission line

Filters: broad, medium, narrow

- broad-band: 100 nm
- intermediate:
- 10-50 nm
- narrow-band:
- $0.05-10 \mathrm{~nm}$

Many filter systems:

- SDSS: u'g'r'i'z'
- Johnson: UBVRI
- Instrument-specific (e.g., HST)

Filters: many filter systems!

- Asiago database of photometric systems
- Information on > 200 photometric systems
- web based: http://ulisse.pd.astro.it/Astro/ADPS/Systems/index.html

Filters: many fí.

ADPS

Guide Star Catalogue - Lasker et al. - 1990138
band $\lambda_{\text {eff }}(\AA) \quad$ FWHM (\AA)
$\mathbf{u}^{\prime} \quad 3557 \quad 599$
g' $4825 \quad 1379$
$\mathbf{r}^{\prime} 6261 \quad 1382$
i' $7672 \quad 1535$
$\begin{array}{ll}\text { z' } & 9097 \\ & 1370\end{array}$

- Asiago database of photometric systems
- Information on > 200 photometric systems
- web based: http://ulisse.pd.astro.it/Astro/ADPS/Systems/index.html

Filters: many f

Sloan DSS - Fukugita et al. - 1996

- Asiago database of photometric systems
- Information on > 200 photometric systems
- web based: http://ulisse.pd.astro.it/Astro/ADPS/Systems/index.html

Point-source Photometry - hands on!

- Objetive:
\rightarrow measure light from a point source (mag)
- A few simple steps: Based on our reduced images, we need to:
(1) Determine the source's centroid
(2) Define an "aperture"
\rightarrow Defines the region where we calculate the flux associated to the source
\rightarrow Use same aperture for standard star
(3) Measure sky background (<sky/pixel>)

Point-source Photometry - (1) Define centroid

- Brightness profile - relatively symmetrical cases are simple

Gaussian is a reasonable fit in many cases

Point-source Photometry - (1) Define centroid

- Brightness profile - relatively symmetrical cases are simple
- But there are more complex cases, of course!

Point-source Photometry - (1) Define centroid

- Consider a brightness distribution

Sum along columns:

$$
\rho_{x_{i}}=\sum_{\mathrm{j}} \mathrm{I}_{\mathrm{ij}}
$$

$\mathrm{I}_{\mathrm{ij}}=$ counts on pixel (i, j)

- Weighted sum (intensity-weighted centroid)

Point-source Photometry - (2) Sky Background

- Objective: get the median value of the sky background (per pixel)

Point-source Photometry - (2) Sky Background

- Objective: get the median value of the sky background (per pixel) sky
value

Point-source Photometry - (3) Define aperture

- Circular Aperture

Point-source Photometry - (3) Define aperture

- Circular Aperture
- Elliptical Aperture

[^0]
Point-source Photometry

- All ingredients in hand!

Counts in each pixel in aperture

$$
\mathrm{m}=\mathrm{c}_{0}-2.5 \log (\mathrm{I})
$$

Point-source Photometry

- All ingredients in hand!
- Additional considerations:
- circular/elliptical aperture... but square pixels!

Point-source Photometry

- All ingredients in hand!
- Additional considerations:
- circular/elliptical aperture... but square pixels!
- Flux extends beyond aperture
- Aperture loss correction (i.e., add a term to correct for this)

. Distance from centroid [pix]

Point-source Photometry

- All ingredients in hand!
- Additional considerations:
- circular/elliptical aperture... but square pixels!
- Flux extends beyond aperture
- Aperture loss correction (i.e., add a term to correct for this)
- Point sources may be superposed on extended regions of emission
- Extra care in defining the sky background!

Point-source Photometry

- Objetive \rightarrow measure light from a point source (in mag units)
 Source + background
- Need to go from "counts" to calibrated flux units
- Need a relation that allows us to convert from an instrumental signal (in count units) to a flux (ergs $/ \mathrm{s} / \mathrm{cm}^{2} / \mathrm{Hz}$)

Point-source Photometry - flux calibration

- Need to define the Zero Point (ZP):

$$
\mathrm{ZP}=\mathrm{m}_{\mathrm{c}}+2.5 \log \left(\mathrm{~S}_{\mathrm{c}} / \mathrm{t}\right)
$$

- where:
- S_{c} is the number of counts from calibration star generated by an image with an exposure time t
- m_{c} is the (know) magnitude of the star (from catalogs: e.g., SDSS, 2MASS)
- We are defining the constant (ZP) that, added the instrumental flux, $-2.5 \log \left(S_{c} / t\right)$, will allow us to recuperate the known magnitude of our calibrator.
- With this constant, ZP, we can obtain the magnitude of any other point source with measured signal S, using the following formula:

$$
m^{*}=-2.5 \log \left(S_{*} / t\right)+Z P
$$

Point-source Photometry - get centroid \& aperture

- Using ds9:
- Select the target of interest by clicking on its location and creating a circular region around it (note: a circular region is the default)
- Double-click \rightarrow Define a reasonable size (e.g., PSF)
- ~2" \rightarrow 11pix
- Analysis \rightarrow Statistics
- Center: coordinates (pixels)

Point-source Photometry - get source, standard's and sky counts

- Using ds9:
- Select the target of interest by clicking on its location and creating a circular region around it (note: a circular region is the default)
- Double-click \rightarrow Define a reasonable size (e.g., PSF)
- ~2" -> 11pix
- Analysis \rightarrow Statistics
- Center: coordinates (pixels)
- Sum: total counts within target's aperture (1695106)
- Sky: use same region, slightly offset from target:
- Sky counts: 888415
- Sky-subtracted counts: 806691
- Standard star \#2: 1118808 (LTT 1788)
- Sky-subtracted counts for standard star: 1118808-sky (869229) =249579
- $V=13.16, B-V=+0.47 \rightarrow B=13.63^{*}$
*http://www.eso.org/sci/observing/tools/standards/spectra/stanlis.html

Point-source Photometry - get zero point

- To calculate the ZP:

$$
Z P=m_{c}+2.5 \log \left(S_{c} / t\right)
$$

- $S_{c}=249579$
- $\mathrm{t}=10 \mathrm{~s}$
- $m_{c}=B=13.63$
$-\quad \rightarrow Z P=13.63+2.5^{*} \log (249579 / 10)=24.62$

Point-source Photometry - ta-taaaaa!

- Use the calculated ZP to obtain the magnitude of any source in your image:

$$
-\quad Z P=24.62
$$

- For our target:

$$
\begin{gathered}
m_{*}=-2.5 \log (S * / t)+Z P \\
\rightarrow m_{A G N _B}=-2.5^{*} \log (806691 / 300)+24.62=16.04 \mathrm{mag}
\end{gathered}
$$

Point Source Photometry -

- Objetive:
\rightarrow measure light from a point source (mag)

Lightcurves - AGN variability!

Point Source Photometry -

- Objetive:
\rightarrow measure light from a point source (mag)

Point Source Photometry -

- Objetive:
\rightarrow measure light from a point source (mag) ASTROPHYSICS!!!!

Useful references

- Understanding noise, propagating errors and calculating signal-to-noise:
- Data Reduction \& Error Analysis for the Physical Sciences, Bevington \& Robinson, 3rd Edition, 2003
- http://hosting.astro.cornell.edu/academics/courses/astro3310/Books/Bevington_opt.pdf
- Data Reduction:
- Astronomy Methods - Bradt, H., Cambridge University Press, 2004
- Astrophysical Techniques - Kitchin, C. R., IOP Publishing, 1998 (3a edição)
- Observational Astronomy, , Birney, D. S., Gonzalez, G., Oesper, D., Cambridge University Press, 2006 (2a edição)
- Other useful online sources:
- http://spiff.rit.edu/richmond/asras/comet_phot/comet_phot.html
- IRAF tutorial (a hands-on step-by-step guide to learn some basic routines in IRAF)
- Follow the irafintro guide @ https://www.astro.ufl.edu/-lee/ast325/helpfiles/iraf/

[^0]: http://www.ast.uct.ac.za/~jarrett/irac/calibration/ngc0584.html

