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Previously on… astrostats
• We have studied the basic rules of probability and 

learned how to estimate probabilities in terms of a 
frequency or repetition of an experiment 

• We have learned what random variables are, and we 
have seen that we can characterize them with 
distributions. 

• We have seen that PDFs are very common in astronomy, 
as they are related to the very problem of measurements 
that have uncertainties. But also they appear naturally in 
nature (e.g., the IMF).



This lecture:
• We will learn how to use statistics in order to compare our 

models of Nature with data obtained with telescopes. 

• We will learn how the problem of fitting a model to a set of 
data is philosophically different for frequentists and Bayesians. 

• We will learn how we can evaluate how good our fit is to a 
particular set of data, given some assumptions. 

• We will learn how to sample the full posterior distribution of 
model parameters, and fully characterize the uncertainties. 

• We will apply this knowledge to the modeling of SNR spectra.



Bayes’ Rule

“An Essay towards solving a Problem 
in the Doctrine of Chances”, 1763

Rev. Thomas Bayes

The Bayes’ theorem is just an implication of the rule of probabilities. But its 
interpretation has a deep impact in the way we interpret probabilities, as we 

will see in the next lecture. In astronomy, Bayesian inference has received lots 
of attention over the last years.



What is a model?
• A (physical) model is an abstract representation of reality. It is 

the framework of ideas and concepts from which we interpret 
our observations or experimental results. 

• As such, a physical model is capable of making predictions 
about the reality that it represents. For example, there is a model 
of reality in which a fair coin will end up heads half of the time. 

• But models (and I cannot emphasize this enough) are NOT 
reality itself, for reality itself is not accesible to us. Reality as we 
perceive it is a model created by our brain based on sensorial 
signals. 

• Statistics and probability are the tools we use to test these 
models against observations obtained in experiments.



• Frequentist statistics is one answer to 
this philosophical question. It treats data 
as a sample from an existing 
population. 

• Data then represent an underlying 
reality that we are trying to characterize. 

• In this sense, data are just particular 
samples randomly generated from a 
distribution of probability that has some 
parameters. Let us refer to these as θ. 

• To know the true value θ*, we would 
need the entire population, not just our 
sample. But we only have the sample, 
and therefore all we can hope for is an 
estimate  θ̂.

What is data?
Wicklin 2015

Two different types of parameters: 

The parameters λ of the model predict 
the  expected values of each datapoint 

The parameters θ for the distribution from 
which is datapoint is generated



Reprise: the likelihood
Remember: likelihood is a way to relate 
our model of reality to data. One possible 
model of reality: Aldebaran has a visible 
magnitude of 0.03. 

A more complex model: X-rays observed 
towards quasar 3C273 are synchrotron 
emission due to relativistic charged 
particles been accelerated by the 
quasar’s magnetic field of intensity B. 

We can always test how likely the data 
we observe are given that model, whose 
parameters λ are the charge of the 
accelerated particles, B, etc. In this case:

3C273

Frequentist: the parameters λ 
adopt fixed true values. How likely 
is our spectrum given those true 
values? 

In fact, what parameter values 
maximize L(λ)?



The frequentist view of  
counting photons: MLE

• Maximum Likelihood Estimate refers to 
the method of maximizing the 
likelihood (which is a PDF over the 
possible values of the flux). 

• We can do this either analytically or 
computationally. 

• MLE assumes nothing about other 
sources of information about the 
model parameters.

The likelihood for a normal model:

We try to find the Ftrue that 
maximizes this likelihood. In this 
case we can do it analytically by 
setting its derivative to zero:

If all errors are equal, we get the 
mean, as expected



From a philosophical point of view, there is 
a different way to understand this problem. 
What if instead of the likelihood of the data 
given a true model, we ask the question: 
what is the probability of the flux being Ftrue, 
given these data? For frequentists, these 
has no meaning whatsoever: 

In Bayesian statistics, probability is not 
about frequencies anymore; it is about a 
degree of belief! 

In this framework, the model parameters are 
not fixed true values anymore, but random 
variables with an associated probability; we 
infer the physics, not data! 

The world of Bayes

The Bayes’ Rule:

This comes from the rules of 
probability.

Before: 
Likelihood alone!

Now:



What are all those terms?

The prior allows to include other information in the computation, information 
that can come from previous experiments of constrains. The prior measures 

what we believe the parameters should be BEFORE we have made the 
current measurement.

Calculating posteriors exactly is difficult!



Notebook: Frequentists vs 
Bayesian



Fitting models to data



Model fitting (the frequentist view)
Suppose you want to fit a set of 
photometric data with a model of your 
choice.

• Your data D = {y1, y2,…, yn} is defined at 
wavelengths Λ = {λ1,λ2,…,λn}. 

• Your data has observational errors             
Σ = {σ1,σ2,…,σn} 

• Your model depends on parameters         
Θ = {θ1, θ2,…,θm}. Example: SFR, Av, M*

The usual approach is to use χ2 

minimization:

(minimize)

But what does this mean? 

• What you are really doing is a maximum 
likelihood estimate (MLE) for a normal 
distribution:

Why Gaussian? Central Limit Theorem



How do you assess if your fit is good?  
the χ2 test

Remember the χ2 distribution? 

If the null hypothesis is true, and your 
data were actually drawn from Gaussian 
distributions, then the square of the 
differences between model predictions 
and datapoint should be distributed 
according to this distribution. 

We reject the null hypothesis for values of 
χ2 above certain critical value that is 
related to the significance level α.

The null hypothesis: there is no difference 
between a distribution of datapoints 
sampled from Gaussian errors and the 
distribution of my points. 

Accept  or reject this hypothesis? Since 
the distribution of the sum of independent 
normal RVs is a χ2 distribution, then we 
use it for the test.

The shape of the distribution depends on 
the number of degrees of freedom:



Assumptions
• We should be careful and always think of your assumptions 

(We often do not do it in writing papers) 

• If we obtain photometry of a source at a given band many 
times, the different measurements will be normally 
distributed. (Gaussian errors) 

• Your model is right. (Likelihood is probability of your data 
being drawn from your model) 

• Photometric points in different bands are uncorrelated 
(Joint probability is the product of independent 
likelihoods). 

• No x-axis errors.



Sampling
Depending on whether we want to 
obtain a point estimate for the 
parameters, or investigate their 
uncertainties, we use an fitter or a 
sampler. 

A point estimate is known as a 
Maximum A Posterori (MAP) estimate. 

Markov Chain Monte Carlo (MCMC) 
methods consist on the construction of 
a Markov Chain that has the desired 
posterior as its equilibrium distribution. 

A Markov Chain is a sequence in which 
next state only depends on current 
state.
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Trick is: construct a Markov chain that 
looks like the posterior. 

Metropolis-Hastings algorithm: a 
possible way to achieve this. 

Choose next candidate according to g(x|
x’), and accept or reject according to:



The Metropolis-Hastings Algorithm
The target and proposal distributions

We want to randomly hop in this 
probability landscape in such a way that 
we land more often on areas of higher 
probability.  

How do we do it?

We define a proposal distribution g(x|x’) 
that represents the probability of 
jumping to the next position, given the 
position where I am now. 

I decide if I actually take the jump 
based on the following: 

•  If P(x) > P(x’), accept the sum 
•  If P(x) < P(x’), accept the jump with 

probability proportional to: 

    

Martino & Louzada, 2015

If we do this many times, we are 
guaranteed that the histogram of the 
samples will look like the target 
distribution (but devil is in the details.)



Convergence of MCMC chains
As your MCMC chain steps across the parameter space, after many 
iterations you expect the parameter values to converge to the target 
distribution. How does a converged chain look like?

Too few effective samples Samples are correlated Converged

You want the acceptance rate to be between 30% 
and 40% 
What can I tune in my MCMC sampler to get a chain 
to converge? 
1) The total number of iterations 
2) Remove early burn-in samples 
3) De-correlate samples by skipping some of them 
4) Change the step size (proposal dist)



Example: 
Metropolis-Hastings 

see Notebook



Fitting vs Sampling
Suppose you want to fit this: Here is a fit Samples from posterior

Fitting is about climbing the probability surface until 
we are sufficiently close to the region of highest 

probability. 

Sampling is reproducing the posterior as 
accurately as possible via some stochastic process 

Uncertainties are fully characterized if sampling is 
done properly. 



Fitting X-ray images and 
spectra (w/ P. Slane)

• How do we infer physical 
information from the most 
extreme objects in the 
Universe? 

• Let’s take the example of 
one the most famous 
supernova remnant 
imaged by Chandra: 
Cassiopeia A



Core-collapse SN

Just before core-collapse, the interior of a massive star looks a little like an 
onion, with shells of successively lighter elements burning around an iron 

core. These burning stages become shorter and shorter as lighter elements 
are fused into heavier elements.



Slide: P. Slane



The spectrum of shocked electrons





Exercise
• We will now extract the spectrum of SNR Cas A and will practice our fitting and 

sampling skills. 

• Use the same obsID as before - 12020 (Cassiopeia A), and the same regions we 
have defined 

• Follow the recipe here to extract the spectra of these regions using CIAO: http://
cxc.harvard.edu/ciao/threads/extended/ 

• Look at the differences in the spectra you extracted. What dominates the emission 
of the red area? What dominates the emission of the green are? 

• Using Sherpa, use an absorbed blackbody to fit the spectrum of the central white 
dwarf. What is the temperature of the star? What is the confidence region for the 
temperature?  

• Use get_draws() in Sherpa to obtain a MCMC chain. Visually inspect if the chain 
has converged, and plot the posteriors.

http://cxc.harvard.edu/ciao/threads/extended/

