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PLASMA @ different scales 

 Intermediate - microscopic scales :    l >> λD  
 kinetic theory describes  collective behaviour of  many charged 

 particles by means of particle distribution functions:                

    

   fe,i(r,u,t) 

 

 Large – macroscopic scales : L  >>   RL  

 fluid description: size and time scales are large  possible to apply  

 AVERAGES over collective plasma oscillations and cyclotron motions    

              (at each r, t):   

                                   MHD description 

 

 Applicable to most astrophysical plasmas 



Fluid description: MHD 
 Maxwell eqs. + hydrodynamics eqs. = Eqs. MHD 

 
(momemtum conservation) (6) 

 

 
(energy conservation)         (7) 

 

g 



 
Key assumption for building MHD eqs. 

 

• Assume the gas achieves local thermal equilibrium 

  Maxwellian distribution function: 

= 1.38 10-16 erg/oK 

And the average velocity of  Maxwellian distribution (one-dimension): 



Fluid description: MHD 
 Maxwell eqs. + hydrodynamics eqs. = Eqs. MHD 

 
(momemtum conservation) (6) 

 

 
(energy conservation)         (7) 

 

g 



A Glance at Gas Dynamics 
Mass Conservation (continuity) equation: 
 

 Fixed volume V and surface S around it  

 

 Rate of change of mass in the fluid contained in V is: 

In the absence of sources or sinks of matter, this is  =  to the net inflow of mass 

over the whole surface. 

 

 Outward  mass flow across an element area in that time is 

 

 Hence mass gained by volume V is         (Gauss theorem) 

 

 Therefore  

 

 

 Since this is true for all volumes ->     

r = n m 



A Glance at Gas Dynamics 
Fluid equations for each charged particle species: 
 

Where energy equation comes from thermodynamics (de +pdV=0), for IDEAL GAS: 

 

 

 

 

Equation of state:  

Mass conservation 

 

 

Momentum conservation 

 

 

Energy conservation 

g: ratio of specific heats 

r = nm 

kB = K 

g 



A Glance at Gas Dynamics 
Eulerian and Lagrangean Derivatives: 
 

 Global fixed frame (t,x,y,z), and co-moving frame (t’,x’,y’,z’)  

 

 Local transformation: 

The time derivative transforms as : 

 

 

 

 

 

 

 Therefore, two forms of mass conservation equation: 

Lagrangean time derivative 

(moving with fluid) 

 

n m = r 



Glance at Lagrangean & Eulerian Derivatives 

• dh/dt: DOES NOT refer to the rate of change of h at a fixed 
point of space (local derivative), 

  

• dh/dt: is the rate of change of h in a portion of the fluid when 
moving in space (material derivative – co-moving with flow). 

 

• dh/dt  has two contributions:  
– one that originates from variation of h over time at a fixed point (r) 

of the space (∂h/∂t) 

– The other that originates from the difference of h between two 
points of the fluid separated by a distance dr at fixed time (v.∇h)  

     (which actually corresponds to the distance that the portion of the       

     fluid moves during  time dt) 

 

D   = 

Dt 



L 

A Glance at Gas Dynamics 

Lagrangean formulation  

(energy conservation )  

  and the momentum equation: 

= 



Building the MHD eqs. 
 Maxwell eqs. + hydrodynamics eqs. = Eqs. MHD 

 
(momemtum conservation) (6) 

 

 
(energy conservation)         (7) 

 

g 



Building the MHD eqs. 
  One-fluid approximation  

 
Combining eqs. of motion of eletrons and ions: 

 Neutral current carrying gas: 
     ions carry mass, momentum, energy 
     electrons carry current, thermal energy  

Assume “slow” dynamics: 
Finite light speed c ignored 
     1/t = w << c/L 
Neglect  terms :   

= 0 



 Building the MHD Equations 

Electric Resistivity: 

    For hydrogen gas (Z=1)  

 

 
      lnL=20-30 (astrophysical plasmas) 



Magnetic Induction Equation 

Advection: gas 

and magnetic 

field coupling 

(freezing) 

Viscosity: 

dissipation of the 

magnetic field 

Biermann Battery: 

only important for 

generation of B 

(dynamos) -> non 

null differential 

rotation (in general 

neglected) 



MHD Equations: ± usual 

(cm2/s) 

(magnetic induction) 

Where magnetic resistivity:  
 

 

Eq. of state to close the system:  

 

(Ampere, divergencia) 

(if ideal gas) 



Magnetic Force 

Tension Force:  
force directed towards 
center of curvature –> 
field lines as “wires 
with tension” 

Magnetic 
Pressure Force 

Ex.: Dipole magnetic field of a  star magnetosphere 
(as in a pulsar):  
           tension = magnetic pressure 

= 0 



 
Ratio between these two terms:  
 

 

 

 

 Magnetic Reynolds number 
 

 In astrophysical plasmas in general:     ReM >>1  ideal MHD: 

 
 
 
 
Exceptions: ReM ≈ 1:Ex. Magnetic Reconnection  resistive MHD   

IDEAL MHD Concept  



Ideal MHD  B Flux Freezing 

 The magnetic flux through A with closed contour that moves with the 

electron gas is CONSTANT (if perfectly conducting fluid)              
 
 Concept of flux freezing -> eq. above equivalent to: 
 
 
 
 
Where  d/dt is comoving (Lagrangean) derivative: 
     

With η = 0: 
 
 
Integrating over an open surface A surrounded by a closed 
contour ∂S and using Stokes' theorem: 
 
 
 

A 

B ve 

ds 

=0 



B Flux Freezing: ideal MHD 

 Magnetic flux freezing (flux of B in co-moving 
area with the flow is constant): 
     
● It means we can see the lines of force of B as 
"frozen" in the electron gas and moving along with 
the gas 
 
● Any motion transverse to the lines of force of the 
magnetic field, carries them along with the fluid 
    
● A fluid element that moves along a flux tube 
remains moving with it. 

B 

B 



 



IDEAL MHD Equations 

(cm2/s) 

(magnetic induction) 

Where magnetic resistivity:  
 

 

Eq. of state to close the system:  

 

(Ampere, divergencia) 

(if ideal gas) 



IDEAL MHD Equations 

(magnetic induction) 

 

 

Eq. of state to close the system:  

 

(Ampere, divergencia) 

(if ideal gas) 

0                   



Is B flux freezing always valid? 

 In astrophysical plasmas: flux freezing valid in general 
because  
 
       L,v  >>1                    >> 1 
 
 

● BUT there are exceptions: 
 

Ex. 1) magnetic reconnection: field dissipation (solar 
corona, earth magnetosphere) 
 
Ex. 2) MHD turbulence: wandering of lines -> reconnection 
 
Ex. 3) dynamos: magnetic field generation  
 



Is B flux freezing always valid? 

 NO 
 
Ex. 1) magnetic reconnection sites: B flux does not conserve because    
 

~1 



Is B flux freezing always valid? 

 NO  
 
Ex. 2) collapse of an interstellar cloud to form a star: 
 
Cloud:  
ρ ∼ 10− 20 gcm− 3 

B ∼ 10− 4 G  
R ~ 107 R* 
 
If we use ideal MHD   B flux conservation :  
 + mass conservation eq., we obtain: 
                           B* ∼ 109 G ! 
 
BUT, observations:     B* ∼ 103 G  
 
Therefore: There was no flux conservation!  There were flux 

removal. What resistive process did that?  
 
 

Star: 
ρ* ∼ 1gcm− 3 
B*  = ?? 



 

 

 
Self-Gravitating collapsing clouds 

 

Leão, de Gouveia Dal Pino et al., ApJ 2013   

t~ 40Myr Turbulent  Non-turbulent  

  B does not allow core collapse  But with turbulence it collapses  



 

 
MHD turbulent diffusion: new scenario  

 
 

 

 

 

 

 

 

     
 

 

 

In presence of turbulence: field lines reconnect fast 

(Lazarian & Vishniac 1999) and magnetic flux transport 

becomes efficient  

Lazarian 2005, 2012 

Santos-Lima et al. 2010, 2012, 2013 

de Gouveia Dal Pino et al. 2012  

t 

t 

 

Diffusion coefficient: 



Is B flux freezing always valid? 

 NO  
 
Ex. 3) dynamo: generates magnetic fields: obviously does not 
conserve magnetic flux  NON  IDEAL  MHD  
 
 
 

....+ new terms  
Biermann Battery 
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