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PLASMA @ different scales

Intermediate - microscopic scales: | >> Ay

kinetic theory describes collective behaviour of many charged
particles by means of particle distribution functions:

f.i(r,u,t)

Large — macroscopic scales: L >> R,

fluid description: size and time scales are large - possible to apply
AVERAGES over collective plasma oscillations and cyclotron motions
(at eachr, t):

MHD description
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‘Applicable to most astrophysical plasmas ‘




Fluid description: MHD

Maxwell eqs. + hydrodynamics eqs. = Eqgs. MHD

e Maxwell's equations describe evolution of electric field E(r, ) and magnetic field
Bir,t) in response to current density j(r. 1} and space charge 7(r,1):

1 0B
EgﬂLVXE:U (Faraday) (1)
la_E _|_4_7T.]:V><B. (‘Ampeére’) (2)
c Ot c
V- -E =4np.p (Poisson) (3)
V-B=0 (no monopoles) (4)
¢ Gas dynamics equations describe evolution of density p(r, 1) and pressure pir,{):
on .
N 1V -nv=0 (mass conservation)  (3)
ov A .
nm E +v-Vv ) =—-Vp+ ng (E + E ><B) (momemtum conservation) (6)
ap .
— 4+ v-Vp+¥pV-v=0 (energy conservation) (7)

ot




Key assumption for building MHD egs.

f(u)

« Assume the gas achieves local thermal equilibrium
=3 Maxwellian distribution function:

f(u) = Aexp(—3mu* /KT)

where f du is the number of particles per m” with velocity between u and u + du,

1 mu? is the kinetic energy, and K i1s Boltzmann’s constant,

K =138 x107"J/°K =1.38 1016 erg/°K

The density n, or number of particles per m°, is given by

n = r f(w)du

— i

- And the average velocity of Maxwellian distribution (one-dimension):

‘bm = (Z,Fc.'T/‘m)'-f2 ‘




Fluid description: MHD
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A Glance at Gas Dynamics

Mass Conservation (continuity) equation:
v" Fixed volume V and surface S around it

v Rate of change of mass in the fluid contained in V is:
d
=nm — dVv.
£ ot fv P

In the absence of sources or sinks of matter, thisis = to the net inflow of mass
over the whole surface.

v' Outward mass flow across an element area in that time is  pu - dS.

v Hence mass gained by volume V is —fspu - dS = —LV - (pu)dV, (Gauss theorem)

0
v' Therefore = — .
wfvpd'v’ fVV (pu)dV.

v" Since this is true for all volumes -> 3—f +V.(pu)=0. Eulerian




A Glance at Gas Dynamics

Fluid equations for each charged particle species:

0
p=nm a—?+v nv =10
nm 8—v—|—v Vv )| =-Vp+n (E—I—EXB)
ot - ovpTn c
0
;;Jrv Vp+7vpV-v=0

Mass conservation

Momentum conservation

Energy conservation

Where energy equation comes from thermodynamics (d¢ +pdV=0), for IDEAL GAS:

AE -nkﬁ( )—Fp\_/' v =0

Equation of state: p=nkgT v: ratio of specific heats




A Glance at Gas Dynamics

Eulerian and Lagrangean Derivatives:
v' Global fixed frame (t,x,y,z), and co-moving frame (t’,x’,y’,z’

v" Local transformation:

dz’ = dx — v,dt dy' = dy — v,dt dz' = dz — v, dt
The time derivative transforms as : Lagrangean time derivative
d QJF Jr 9 +dy 9 +dz 9 (moving with fluid)
dt ot dtdr dt dy  dt 0z . g_ngvv
d d o) %, dt ot

= E‘FUT% +Uy8—y ‘I"Uza

v' Therefore, two forms of mass conservation equation:

%-l—nv-\r:%—l—v-nv:ﬂ nm

1
i®)




Glance at Lagrangean & Eulerian Derivatives

d 9,
D_= — T — .
[Dt it o Y VJ

dh/dt: DOES NOT refer to the rate of change of h at a fixed
point of space (local derivative),

dh/dt: is the rate of change of h in a portion of the fluid when
moving in space (material derivative - co-moving with flow).

dh/dt has two contributions:

- one that originates from variation of h over time at a fixed point (r)
of the space (oh/dt)

- The other that originates from the difference of h between two
points of the fluid separated by a distance dr at fixed time (v.Vh)

(which actually corresponds to the distance that the portion of the
fluid moves during time dt)



A Glance at Gas Dynamics

Lagrangean formulation D.4d_90 .
9 g Dt di ot +v-V

¢ Gas dynamics equations describe evolution of density p(r, t) and pressure pir, 1)

Dp a5y

—F +pV-v = —f + V- (pv) =1, (mass conservation)
'

[TL:: +4pV v = d—‘; +v-Vp+4pV-v =10, (energy conservation)

and the momentum equation:

nm% :nm<g—:+v-VV) = —Vp+ ng (E—l—ExB)



Building the MHD egs.

Maxwell eqs. + hydrodynamics eqs. = Eqgs. MHD

e Maxwell's equations describe evolution of electric field E(r, ) and magnetic field
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Building the MHD egs.

[One-fluid approximation ]

Combining eqs. of motion of eletrons and ions:

e Define one-fluid variables that are linear combinations of the two-fluid variables:

P = n.me + ngm,; .

peh = —€(n, — Zn;) =0
vV = (nemeu, + nymaw;) /p.
| = —€(n.a, — Zn;) ,
P=p.+ ;.

(total mass density)
(charge density)

(center of mass velocity)
(current density)
(pressure)

v" Neutral current carrying gas:
lons carry mass, momentum, energy
electrons carry current, thermal energy

(" "l .

Assume "slow” dynamics.

Finite light speed c ignored
I/t=w<c/L

Neglect terms :c™'(0/0t) )




Building the MHD Equations

dp o
8—’[ +V - (pv) =0, (continuity)
'("')V | R )
P (5 +v-Vv)+ Vp— ~J x B 0. (momentum)
ap , i :
5)_1{ +v-Vp+9pV-v= (y—=1)nlj|* , (internal energy)
0B o .
5 +eV x BE=10), (Faraday)
where f_Ca A
TR (Ampére)
. 0 - P =
E=--< x B+ ﬂy— Vpe + i1 (Ohm)
and © c Hle
V-B=10 (no magnetic monopoles)
is initial condition on Faraday's law. 4 For hydrogen gas (Z=1)
. T M Vsh O e _Tx107
Electric Resistivity: 5 = Z;; n="gp A s

\_ InA=20-30 (astrophysical plasmas)

J




Magnetic Induction Equation

B m T, S 1

_—Z—L‘ﬁK_E, E:—; B+ —g- ﬁpr"""f'f
¢ & ¢ ¢ Tl €
a8 - - - Hes oy = o -
=V x (# x B) + V2B — —Vn. x Vp.
! 4 noe
3 v ¥
Advection: gas Viscosity: Biermann Battery:
and magnetic dissipation of the only important for
field coupling magnetic field generation of B
(freezing) (dynamos) -> non

null differential
rotation (in general
neglected)




MHD Equations: + usual

)
()/{) + V- (pv) =0, (continuity)
(

v

P l? +v-:-Vv)+ Vp— %fx BE Q. (momentum)
()p Ty :
B +v-Vp+4pV -v= (v —=1)nljl= , (internal energy)
o8 - . 4o o - |
= = Vx (v x B)+ vy, V°B (magnetic induction)
(

J = %Y—" x B V-B=1. (Ampere, divergencia)

Where magnetic resistivity: = _ e (cm2s)
d7

Eq. of state to close the system: |p = nkgT (if ideal gas)




Magnetic Force

4 BT
I, - = B*i = B
— By= —— — =
-3, (\ )
Tension Force: Magnetic

force directed towards | | Pressure Force
center of curvature ->
field lines as “wires
with tension”

Ex.: Dipole magnetic field of a star magnetosphere
(as in a pulsar):
tension = magnetic pressure

%{.}?;ﬂ: B) =0




IDEAL MHD Concept

9B - » e
‘ =V x (1, x B) +4 v VB

ot
Ratio between these two terms:

|V x (7. x B) |  Lu,.
g | ﬁ'&ﬁ | Mg

> Magnetic Reynolds number

In astrophysical plasmas in general: R, >>1 = ideal MHD:

B ) )
2> | 5=V x (@ x B) ™. J:

Exceptions: R,y ® 1:Ex. Magnetic Reconnection > resistive MHD



Ideal MHD — B Flux Freezing

2 —F
: AL nes ab . .
With n=0: If},;—F—O —> ?zﬁx(ﬁ.xﬂj
[ {}t
By
Integrating over an open surface A surrounded by a closed o« T ‘-‘;’

contour 3S and using Stokes' theorem: i
— [ BdA+ ¢ (5. x ds).B =0 s
at S Jas

-~

> The magnetic flux through A with closed contour that moves with the
electron gas is CONSTANT (if perfectly conducting fluid)

- Concept of flux freezing -> eq. above equivalent to:

a L
—r =1 = | B.dA
dat” P f t

Where d/dt is comoving (Lagrangean) derivative: E ~ ot



B Flux Freezing: ideal MHD

il
mu ()

> Magnetic flux freezing (flux of B in co-moving
area with the flow is constant):

It means we can see the lines of force of B as B reg
"frozen" in the electron gas and moving along with j R
the gas . .
' .
. Any motion transverse fo the lines of force of the % o
magnetic field, carries them along with the fluid tes

o A fluid element that moves along a flux tube
remains moving with it. ‘g—



In ideal MHD, the magnetic field and plasma are frozen-in

to each other

» If a parcel of plasma moves, the magnetic field attached to
the parcel moves along with it

» More rigorously: if two plasma elements are initially connected
by a magnetic field line, they will remain connected by a
magnetic field line at future times.

» Magnetic topology (e.g., connectivity) is preserved in ideal
MHD

» The plasma cannot move across magnetic field lines (though
it remains free to move along the field)



IDEAL MHD Equations

dp
)/f + V- (pv) =0, (continuity)
(
v e, -
p l? +v-:-Vv)+ Vp— ~J x B 0. (momentum)
(
()p SToD :
Br +v-Vp+pV-v= (3 n\jl= . (internal energy)
B - < o
{.? =V x (1, x B) 4 u(V{B (magnetic induction)
0
J = %Y—" x B V-B=1. (Ampere, divergencia)
Where magnetic resistivity: | _ ne’  (cm?s)
' 4

Eq. of state to close the system: |p = nkgT (if ideal gas)




IDEAL MHD Equations

()/)
+V-(pv) =0,
ot f

v

pl—+v- Vv;+Vp—l.fo?-(l.
C

ot
+v-Vp4+ypV-v=

c)p
ot

fz;‘ﬁ'xé VB =1,

Eq. of state to close the system:

p = nkgT

(continuity)
(momentum)

(internal energy)

(magnetic induction)

(Ampere, divergencia)

(if ideal gas)



Is B flux freezing always valid?

- In astrophysical plasmas: flux freezing valid in general
because

Lv,

Mg

Lv >>1 > = fi.pr >> 1

. BUT there are exceptions:

Ex. 1) magnetic reconnection: field dissipation (solar
corona, earth magnetosphere)

Ex. 2) MHD turbulence: wandering of lines -> reconnection

Ex. 3) dynamos: magnetic field generation



Is B flux freezing always valid?

- NO

Ex. 1) magnetic reconnection sites: B flux does not conserve because

( Example: Coronal loops (contd) |

o Magnete ficld, B

S
\ iirrent density. )

e etreee o (2 (3 b L L

b

plasma flow

Lu.

Mg

= Henr ~1




Is B flux freezing always valid?

- NO

Ex. 2) collapse of an interstellar cloud to form a star:

Cloud: Star:

p ~10-20gcm=3 px ~ 1gcm™3
B~1046 B. = ?2?

R ~ 107 R«

If we use ideal MHD > B flux conservation : f—.:;': =} o= f B.dA
+ mass conservation eq., we obtain:
B* ~ 109 6 !

BUT, observations: B. ~ 103 6

Therefore: There was no flux conservationl There were flux
removal. What resistive process did that?



Self-Gravitating collapsing clouds

Turbulent

Non-turbulent t~ 40Myr

B does not allow core collapse But with turbulence it collapses

Leao, de Gouvelia Dal Pino et al., ApJ 2013



MHD turbulent diffusion: new scenario

In presence of turbulence: field lines reconnect fast
(Lazarian & Vishniac 1999) and magnetic flux transport
becomes efficient

Diffusion coefficient:

:'?t“" 'Einj"uturh

Lazarian 2005, 2012
Santos-Lima et al. 2010, 2012, 2013
de Gouveia Dal Pino et al. 2012




Is B flux freezing always valid?

- NO

Ex. 3) dynamo: generates magnetic fields: obviously does not
conserve magnetic flux > NON IDEAL MHD

|Ji:IJ.

() = S Tl =
— =V X = I3 VB - —"'Tf' e X N
ot X (Te ) + 4 nle 1 VP

Biermann Battery

....+ hew terms
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