MHD for ASTROPHYSICISTS

Elisa Bete M. de Gouveia Dal Pino IAG-USP – Universidade de Sao Paulo

NOTES:http://www.astro.iag.usp.br/~dalpino/?q=teaching (references therein)

41st ISYA, Socorro, Colombia, 9-13 July, 2018

Plasmas in Astrophysics

Class 1

- What is plasma?
- Why plasmas in astrophysics?
- Quasi-neutrality

What is PLASMA?

- Gas with sufficient number of free charged particles (positive + negative) → so that its behaviour dominated by electromagnetic forces.
- Even low ionization degree (n_{ch}/n_{total}~1%) : sufficient for gas to show electromagnetic properties (electrical conductivity ~ fully ionized gas) -> PLASMA!

More formal PLASMA Concept

Plasma: quasi-neutral gas of charged particles (electrons+ions):

e n_e ~ e Z n_i

with long range *collective interactions*:

(binary collisions not important)

Why Plasmas in Astrophysics ?

The universe does not consist of ordinary matter)

Over 90% of visible matter in Universe:

PLASMA!

Exs. Astrophysical Plasmas

Example: The Sun

a magnetized plasma!

(sunatallwavelengths.mpeg)

Exs. Astrophysical Plasmas

Example: Coronal loops (cont'd)

[from recent observations with TRACE spacecraft]

Sun and Earth

Ex. Plasmas in Earth

Ex. Plasmas in Earth

HH30

 Magnetized plasmas are present in almost all astrophysical objects

They are crucial in:

star formation; late stages

solar and stellar activity

 formation of jets and accretion disks

formation and propagation of cosmic rays
galaxy structure

- Magnetized plasmas are present in almost all astrophysical objects
- They are **crucial** in:
 - star formation; late stages
 - solar and stellar activity
 - formation of jets and accretion disks

formation and propagation of cosmic rays
galaxy structure

• They are also **crucial** in:

- ISM

- GRBs

- molecular clouds
- supernova remnants
- proto-planetary disks
- planetary nebulae

 Their importance not well understood yet in:

stellar evolution

galaxy evolution

- structure formation in the early Universe

Black Holes surrounds

Star Formation and ISM

Accretion disks

Sun & Stars

PLASMAS in Astrophysics

Pulsars

Galaxies

Neutron Stars

Plasmas also in Laboratory

Major goal is to produce clean energy via:

Thermonuclear fusion (as in the interior of stars) → production of energy!

Magnetic Fields in a PLASMA provide the only way to confine matter of very high temperatures during long times!

Understanding Quasi Neutrality

$$Zen_i = en_e$$

- Let us assume a gas of charged particles with local charge concentration (e $\delta n_e)$
- ightarrow according to Coulomb law: $\bar{\nabla}$

$$\vec{7} \cdot \vec{E} = \frac{\partial E_{//}}{\partial x} = -4\pi e \delta n_e$$

 \rightarrow generates the electric field: $E_{//} = 4\pi e n_e \xi$

→ E_{//} provokes on the thermal random motion of electrons: flow with velocity $v_{//}$: $\frac{dv_{//}}{dt} = \frac{d^2\xi}{dt^2} = -\frac{e}{m_e}E_{//} = -\frac{4\pi n_e e^2}{m_e}\xi$

- Solution: simple harmonic motion with plasma electron frequency that in the average neutralizes $E_{\prime\prime}$:

$$\omega_{pe} = \left(\frac{4\pi n_e e^2}{m_e}\right)^{1/2} \simeq 5.6 \times 10^4 n_e^{1/2} \quad s^{-1}$$

Quasi Neutrality- Plasma Frequency

- w_{pe} defines natural plasma frequency (neutralizes E effect)
- Ions oscilate with much << frequency → (practically at rest in relation to els.)

$$\omega_{pi} = \left(\frac{Zm_e}{m_i}\right)^{1/2} \omega_{pe}$$

- Any external electric field E applied with freq. $\omega < \omega_{pe}$ is unable to penetrate the plasma

Debye length:
$$\lambda_D = v_{th}/\omega_{pe}$$

F does not penetrate plasma if:
$$\omega < \omega_{pe} \rightarrow \lambda > \lambda_{D}$$

PLASMA: Debye length (Λ_D)

• $\Lambda_D \rightarrow$ scale within which separation between charges can be "felt":

$$\lambda_D \simeq \frac{v_{th}}{\omega_{pe}} \simeq \left(\frac{KT_e}{4\pi n_e e^2}\right)^{1/2} = 7 \ cm \ (T_e/n_e)^{1/2}$$

• Within sphere of radius $(\Lambda_D) \rightarrow$ charge neutrality is not valid: electrostatic external oscillations with $\Lambda \leq \Lambda_D$ penetrate the sphere and feel the collective effects of the charges \rightarrow strongly damped (Landau damping)

• Electric Potential Field of a charge within plasma: has its action screened (or partially blocked) by clouds of charges

$$\phi(r) = \frac{-en_1}{r} e^{-r/\lambda_D}$$

Quasi Neutrality in Astrophysical Plasmas

- Tpypical dimension of astrophysical plasmas: L>> A_D
 - quase neutrality is valid
 - → Internal E fields: little important !
 - (neutralized by strong plasma oscillations w_{pe})
 - \rightarrow External E fields typically do not penetrate

 $(\mathbf{\omega} \leftrightarrow \mathbf{\omega}_{pe}, \mathbf{\lambda} \gg \mathbf{\lambda}_{D})$

Plasma: collective behaviour

$$\lambda_D \simeq \frac{v_{th}}{\omega_{pe}} \simeq \left(\frac{KT_e}{4\pi n_e e^2}\right)^{1/2} = 7 \ cm \ (T_e/n_e)^{1/2}$$

-> So that the system size Λ is much larger than Λ_D : collective behaviour

Plasma Physics

Three theoretical models:

- Theory of motion of single charged particles in given magnetic and electric fields;
- Kinetic theory of a collection of such particles, describing plasmas microscopically by means of particle distribution functions f_{e,i}(r, v, t);
- Fluid theory (magnetohydrodynamics), describing plasmas in terms of averaged macroscopic functions of r and t.

Plasma Physics

Three theoretical models:

Theory of motion of single charged particles in given magnetic and electric fields;

- Kinetic theory of a collection of such particles, describing plasmas microscopically by means of particle distribution functions f_{e,i}(r, v, t);
- Fluid theory (magnetohydrodynamics), describing plasmas in terms of averaged macroscopic functions of r and t.

Equation of motion)

of charged particle in given electric and magnetic field, $\mathbf{E}(\mathbf{r},t)$ and $\mathbf{B}(\mathbf{r},t)$:

$$n\frac{d\vec{v}}{dt} = q\left(\vec{E} + \frac{\vec{v}}{c} \times \vec{B}\right)$$

Let us

Apply to constant magnetic field B = Be_z, E = 0:

I

Systematic solution of Eq. (1) with v = dr/dt = (x, y, z) gives two coupled differential equations for motion in the perpendicular plane:

 $\ddot{x} - (qB/mc) \dot{y} = 0,$ $\ddot{y} + (qB/mc) \dot{x} = 0.$

 \Rightarrow periodic motion about a fixed point $x = x_c$, $y = y_c$ (the guiding centre).

Cyclotron motion

cgs

This yields periodic motion in a magnetic field, with gyro- (cyclotron) frequency

$$\omega_B = \frac{\mid q \mid B}{mc} = \Omega$$

and cyclotron (gyro-)radius

$$r_B = rac{v_\perp}{\omega_B} pprox rac{\sqrt{2mkT}}{|q|B}$$
ç

 $\Rightarrow\,$ Effectively, charged particles stick to the field lines.

Opposite motion of electrons and ions about guiding centres with quite different gyrofrequencies and radii, since $m_e \ll m_i$:

$$\Omega_e \equiv \frac{eB}{m_e \mathbf{C}} \gg \ \Omega_i \equiv \frac{ZeB}{m_i \mathbf{C}}, \qquad R_e \approx \frac{\sqrt{2m_e kT}}{eB} \mathbf{C} \ll \ R_i \approx \frac{\sqrt{2m_i kT}}{ZeB} \,. \, \mathbf{C}$$

Cyclotron motion (cont'd)

Orders of magnitude

Typical gyro-frequencies, e.g. for corona plasma B ~ 10⁴ G:

$$\Omega_e = 5.3 \times 10^{11} \, \mathrm{rad \, s^{-1}}$$

$$\Omega_i = 2.9 \times 10^8 \, \mathrm{rad} \, \mathrm{s}^{-1}$$

• Gyro-radii, with $v_{\perp} = v_{\rm th} \equiv \sqrt{2kT/m}$ for $T_e = T_i \sim 10^6$ K:

 $v_{{
m th},e} \sim 3\ 10^8 {
m cm/s}$ $R_e \sim 10^{-3} {
m cm}$ $v_{{
m th},i} \sim 10^7 {
m cm/s}$ \Rightarrow $R_i \sim 3\ 10^{-2} {
m cm}$

 \Rightarrow The large corona time scales and dimensions *justify averaging*.

- Magnetic fields:
 - 1. charged particles gyrate around field lines;

2. fluid and magnetic field move together ("B frozen into the plasma");

Plasma Physics

Three theoretical models:

Theory of motion of single charged particles in given magnetic and electric fields;

Kinetic theory of a collection of such particles, describing plasmas microscopically by means of particle distribution functions $f_{e,i}(\mathbf{r}, \mathbf{v}, t)$;

 Fluid theory (magnetohydrodynamics), describing plasmas in terms of averaged macroscopic functions of r and t.

Kinetic Description of a Plasma

A plasma consists of a very large number of interacting charged particles \Rightarrow *kinetic plasma theory* derives the equations describing the *collective behavior* of the many charged particles by applying the methods of statistical mechanics.

$$(\omega \ge \omega_{pe} \quad | \ge \Lambda_{D})$$

Kinetic theory describes the collective behaviour of the many charged particles by means of particle distribution functions (**Follker-Planck equation**):

$$f(r, u, t) \rightarrow \frac{\partial f}{\partial t} + \mathbf{u} \cdot \nabla_x f + \frac{q}{m} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \nabla_u f = 0$$

Plasma Physics

Three theoretical models:

- Theory of motion of single charged particles in given magnetic and electric fields;
- Kinetic theory of a collection of such particles, describing plasmas microscopically by means of particle distribution functions f_{e,i}(r, v, t);

Fluid theory (magnetohydrodynamics), describing plasmas in terms of averaged macroscopic functions of r and t.

Fluid description: Magnetohydrodynamics (MHD)

Macroscopic definition

Macroscopic model: size and time scales are large enough → possible to apply AVERAGES over microscopic quantities: colective plasma oscillations and collective cyclotron motions of ions and electrons

(a) $\tau \gg \Omega_i^{-1} \sim B^{-1}$ (time scale longer than inverse cyclotron frequency); (b) $\lambda \gg R_i \sim B^{-1}$ (length scale larger than cyclotron radius).

→ MHD = magnetohydrodynamics

PLASMA @ different scales

Intermediate - *microscopic scales* : >> λ_{D}

kinetic theory describes the collective behaviour of the many charged particles by means of particle distribution functions (**Folker-Planck** equation):

 $f_{e,i}(\mathbf{r},\mathbf{v},\mathbf{t})$

Large – macroscopic scales : L >> R_L

effectively **collisional** -> **fluid description**: size and time scales are large enough → possible to apply AVERAGES over microscopic quantities: over collective plasma oscillations and collective cyclotron motions - MHD equations

Applicable to most astrophysical plasmas

End of Class 1