Observational Astronomy \& Data Reduction

Karín Menéndez-Delmestre Observatório do Valongo
I. Basics Concepts in Observational Astronomy:

- Telescopes
- coordinate systems

Syllabus

- Image Quality
II. Signal and Sources of Noise
- Detectors
- Poisson statistics
- shot noise
- sky
- Read noise
- dark current
III. Observing Strategies
\& Planning your observing night
IV. Basics of Data Reduction
- Bias, Flats, Darks
- What, Why, When, How long and How many
V. Data Reduction
- Simple arithmetics!
- Bringing in the computer tools*
- Using basic IRAF routines or Python
VI. Basic Aperture Photometry

Karín Menéndez-Delmestre Observatório do Valongo

Telescopes

- Optical system that consists of:
- Objetive: primary optical element (lens/mirror)

Telescopes

- Optical system that consists of:
- Objetive: primary optical element (lens/mirror)

Reflection:
Incident light is returns to the same medium. S is a well polished metallic-like (e.g., mirror) surface.

Telescopes

- Optical system that consists of:
- Objetive: primary optical element (lens/mirror)
- What for? Capture light!
- At the focal plane \rightarrow form an image!
- A detector (e.g., CCD) \rightarrow camera, or
- eyepiece

Telescopes - basic functions

- Main function: collect photons
- A telescope captures radiation intercepted by its aperture
- The bigger the aperture, the larger the quantity of photons collected
-> collecting capacity is proportional to the area.

If photons of light are like raindrops, then telescopes are like buckets.

Telescopes - basic functions

- Main function: collect photons
- A telescope captures radiation intercepted by its aperture
- The bigger the aperture, the larger the quantity of photons collected
-> collecting capacity is proportional to the area.
- Telescope size = aperture size = diameter of objective
- In small telescopes, we measure the aperture in mm or cm
- big ones, in meters!
- Can also think in terms of how long it takes to collect a fixed amount of energy
- telescopes with larger apertures will collect in a shorter amount of time:

$$
t_{\text {big }}=\left(D_{\text {big }} / D_{\text {small }}\right)^{2} t_{\text {small }} \quad \begin{gathered}
\text { where } t_{\text {big }} \text { is the } \\
\text { integration time for the }
\end{gathered}
$$

Question \#1

- How much faster can a 10 m telescope collect light compared to a human eye?

Eye: ~7mm

Telescopes - optical properties

- Fundamental properties of any telescope:
- Focal distance (F): distance (from the objective) at which the image of an infinitely-far away object is formed formada = distance between lens/mirror and the focal plane

Refracting Telescope

Note:
The optical path of a telescope is typically composed of various optical elements (lenses/mirrors); we refer to the effective focal distance for the whole optical system.

Telescopes - optical properties

- Fundamental properties of any telescope:
- Focal distance (F): distance (from the objective) at which the image of an infinitely-far away object is formed formada = distance between lens/mirror and the focal plane

Telescopes - optical properties

- Fundamental properties of any telescope:
- Focal distance (F): distance (from the objective) at which the image of an infinitely-far away object is formed formada = distance between lens/mirror and the focal plane
- Aperture (A): diameter of the primary mirror/lens
- Focal ratio (=F/A): $f /$ number

Telescopes - optical properties

- Fundamental properties of any telescope:
- Focal distance (F): distance (from the objective) at which the image of an infinitely-far away object is formed formada = distance between lens/mirror and the focal plane
- Aperture (A): diameter of the primary mirror/lens
- Focal ratio (=F/A): $f /$ number
- The larger the focal distance, the larger the focal ratio (i.e., the larger the "number" in the expression f /number)

Telescopes - image size and FOV

- An object with an angular size θ (in radians) on the sky will form an image with linear physical size h (in mm) on the focal plane:

$$
h=\theta_{\text {radians }} F
$$

2π radians $=360$ deg $\times 60^{\prime} \times 60^{\prime \prime}$
$\rightarrow 1$ rad = 206265"

For small θ :

$$
F \times \theta=h
$$

\rightarrow the larger the focal distance, the larger the physical size of the image

Telescopes - image size and FOV

- An object with an angular size θ (in radians) on the sky will form an image with linear physical size h (in mm) on the focal plane:

$$
h=\theta_{\text {radians }} \mathrm{F}
$$

- If our detector (i.e., CCD) has physical dimensions $a \times b$, the field of view (FOV) will be:

$$
\theta_{\mathrm{a}} \times \theta_{\mathrm{b}}=(a \times b) / \mathrm{F}^{2}
$$

The larger the focal ratio, the smaller the FOV

Reflecting Telescopes - types

- Newtonian: simplest form of a reflecting telescope
- A flat secondary mirror redirects light towards telescope side, where eyepiece/detector is placed.
- Amateur astronomer's favorite: clean image (low in aberrations) and cheap!

Reflecting Telescopes - types

- Newtonian: simplest form of a reflecting telescope
- Cassegrain:
- A convex secondary mirror intercepts light reflected from a concave primary and sends it down a central opening in the primary mirror, where the detector is placed. This is the "cassegrain focus".
- The otherwise long light path folds onto a smaller telescope size \rightarrow allows for large aperture telescopes to be placed

Reflecting Telescopes - types

- Newtonian: simplest form of a reflecting telescope
- Cassegrain:

Variants:

- Ritchey Chrétien (e.g., Keck, Hubble)
- shape of primary and secondary mirrors are different
(hyperbolic) to minimize offaxis aberrations (e.g., coma)
- Happens in paraboloid mirrors \rightarrow light rays incident at an angle θ from the main
 optical axis do not all converge exactly at the same spot on the focal plane.
- Aberration results in a comet-like image extending from the focal point.

Reflecting Telescopes - types

- Newtonian: simplest form of a reflecting telescope
- Cassegrain:

Variants:

- Ritchey Chrétien
- Nasmyth
- A tertiary mirror redirects light reflected from the secondary mirror to a lateral focus plane \rightarrow "Nasmyth focus"

http://www.sozvezdiya.ru/eng/n.php

Telescopes - can host of many instruments!

- A large quantity of instruments can be installed on a telescope:
- Prime focus
- Nasmyth focus
- Cassegrain focus

Telescopes - can host of many instruments!

Hale (200-inch) Palomar Observatory

Telescopes - can host of many instruments!

Hale (200-inch) Palomar Observatory

Telescopes - can host of many instruments!

Hale (200-inch) Palomar Observatory

Telescopes - can host of many instruments!

Hale (200-inch) Palomar Observatory

Installing AO
system on
Cassegrain focus

Being close to the ground, the Cassegrain focus is a conveniente site to place/change instruments.

Telescopes - can host of many instruments!

Keck Telescopes ($2 \times 10 \mathrm{~m}$)

Telescopes - can host of many instruments!

Telescopes - equatorial and azimuth mounts

- Equatorial mount:
- Typically used in medium-sized telescopes
- One of the axes is parallel to the Earth's rotation axis
- Only need to rotate to track the daily movement of the object.

Telescopes - equatorial and azimuth mounts

- Alt-azimuth mount:
- Typically used in large professional telescopes
- 2 axis: vertical and horizontal \rightarrow mechanically more stable than the equatorial mount
- Rotation about the vertical axis varies the azimuth
- Rotation about the horizontal axis varies the altitude
- Need to rotate both axes to track objects

Vik Dhillon's Lecture notes
University of Sheffield, UK

Telescopes - pointing challenges

- Pointing and guiding are not perfect in any mount:
- Alignment of rotation axes
- Mechanical flexure of the physical structure (gravity!)
- Gearing errors
- Atmospheric refraction
-> Real-time corrections on the pointing are made by guiders
- a parallel tracking system that follows bright stars chosen as guides
- Crucial for long integrations!

Coordinate system - the celestial sphere

- Need a system to define the positions of celestial bodies
- Independent of the distance!
- A 2D view (a projected view) of the night sky
- Celestial Sphere: not real, but a useful concept!
- Consider as though stars where stickers on a large sphere, with Earth at its center

Coordinate system - the celestial sphere

- To define the position of a point on a sphere, need two angles
(1) Horizontal system: alt and azimuth - most intuitive system for an observer on the Earth's surface.
- Altitude (a) or elevation: \Varangle above observer's horizon
- Azimuth (A): \Varangle that defines distance between a reference point and the projection of the celestial body onto the horizon's plane.
- Reference point: North (4 increases towards East)

altitude < 0 corresponds to objects below the horizon

Coordinate system - the celestial sphere

- To define the position of a point on a sphere, need two angles
(1) Horizontal system: alt and azimuth - most intuitive system for an observer on the Earth's surface.
- Altitude (a) or elevation: \lfloor above observer's horizon
- Azimuth (A): \Varangle that defines distance between a reference point and the projection of the celestial body onto the horizon's plane.
- Reference point: North (4 increases towards East)

altitude < 0 corresponds to objects below the horizon

http://wns.sistcrds.htm

Question \#2

- Consider the Sun's altitude just before (and just after) the sunset.
a. Does the sky become dark when the Sun sets? Immediately? A bit later?
b. Define the concept of "Astronomical Twighlight"
c. Why is this concept important when observing?

Coordinate system - the celestial sphere

- To define the position of a point on a sphere, need two angles
(1) Horizontal system: alt and azimuth
(2) Equatorial system: declination (DEC) and right ascension (RA)
- Similar to the latitude system on Earth, where the plane of reference is the Earth's equator; in the equatorial system we have the celestial equator (an extension of the Earth's equator)

Coordinate system - the celestial sphere

- To define the position of a point on a sphere, need two angles
(1) Horizontal system: alt and azimuth
(2) Equatorial system: declination (DEC) and right ascension (RA)

- Declination (δ): \Varangle above celestial equator
- Right Ascension (a): \lfloor from a reference point and the projection of the celestial object onto the equatorial plane
- Reference point: "Vernal point" (\curlyvee)
- \Varangle increases towards the East

Vernal point: This is the Sun's position on the March equinox, when the Sun crosses the equatorial plane towards the North.

Question \#3

- What are the approximate RA/DEC coordinates of a celestial body that would be ideal to observe tonight?

Socorro's latitute: $\sim 6.5^{\circ} \mathrm{N}$
Today's date: July 9, 2018

Tanc Nbwion Group or Ibirscopes ©

Home > Astronomy > Object Visibility

Object Visibility - STARALT

Staralt is a program that shows the observability of objects in various ways: either you can plot
alititude against time for a particular night (Staralt), or plot the path of your objects across the sky for
 the best obsening date fo
at the bottom of the page.

Mode	Staralt - ${ }^{\text {a }}$
Night	09 July 2018 or date when the local night starts. Staralt,
Observato	```Roque de los Muchachos Observatory (La Palma, Spain) & Select one above or specify your own site with this format: Longitude((}\mp@subsup{}{}{\circ}\textrm{E}\mathrm{) Latitude((}\mp@subsup{}{}{\textrm{N}}\mathrm{) Altitude(metres) UT-offset(hours) Ex.: 289.2767 -30.2283 2725-4 -73.2640 6.4687```
	Formats can be any of these: name hh mm ss $\pm d \mathrm{dm}$ ss name hh:mm:ss \pm dd:mm:ss name ddd.ddd dd.ddd name must be a single word with no dots, avoid using single numbers. Every entry must be in the same format, do not use different formats with different entries. We recommmend a maximum of 100 targets per submission.
Coordinates	Altematively, you can upload a file with coofriniates. You can use the same format as in the TC'S catalog. Target names must be single words with no dots. choose efle no file selected
Opt	
Submit	Retrieve Helo
ING telescope limits	WHT: 89.8° < Altitude < 12° (plot). Targets with $+28: 57: 40>$ Dec> $+28: 33: 40$ won t be accessible when transiting the zenital blind spot ($\sim 0.2^{\circ}$ size). INT: $90^{\circ}<$ Altitude < 33° (20° if lower shutter raised), $-6 \mathrm{~h}<\mathrm{HA}<+6$, $+90^{\circ}>$ Dec $>-30^{\circ} 09^{\circ} 30^{\prime \prime}$ (HA-Dec plot - lower shutter raised; lowest altitude-Dec plot).
More	These are other useful resources for planning observations: iObserve, astronomy tools, JSkyCalc, obstools, NOT's visplot.

19:00:00.00 $+06: 00: 00.00$

Question \#3

Moon (dashed): Coordinates: $4^{\mathrm{h}} 27^{\mathrm{m}}+17^{\circ} 16^{.}$ Illumination: 12% Quarter: 4 Numbers below curves are Moon distance (in degrees) at the corresponding times.

StarAlt:

http://catserver.ing.iac.es/staralt/

Question \#3

- What are the approximate RA/DEC coordinates of a celestial body that would be ideal to observe tonight?

```
Socorro's latitute: ~6.5
```

Today's date: July 9, 2018

Coordinate system - the celestial sphere

- To define the position of a point on a sphere, need two angles
(1) Horizontal system: alt and azimuth
(2) Equatorial system: declination (DEC) and right ascension (RA)

- Declination($(\mathbf{\delta})$ in degrees:
dd:mm:ss.ss
degrees: arcminutes : arcseconds
$\delta>0$ Northern hemisphere;
$\delta<0$ Southern hemisphere
- Right ascension (a) in hours:
hh:mm:ss.ss
hours: minutes : seconds

Note: RA is typically expressed as hh:mm:ss.ss. However, at times we can also find it in terms of decimal hours (i.e., hh.hh) or degrees (i.e., dd.dd).

Coordinate system - the celestial sphere

- To define the position of a point on a sphere, need two angles
(1) Horizontal system: alt and azimuth
(2) Equatorial system: declination (DEC) and right ascension (RA)

- Declination($(\mathbf{)}$
- Right ascension (a)
* Reminder: The angular distance between two points with the same declination is not simply the difference in RA.
* factor of $\cos (D E C)$!
* RA is measured on the plane of the equator.
http://www.astro.cornell.edu/~berthoud/alpsat/chapter4a.html

Coordinate system - the celestial sphere

- To define the position of a point on a sphere, need two angles
(1) Horizontal system: alt and azimuth
(2) Equatorial system: declination (DEC) and right ascension (RA)

Hour angle (HA) of a celestial body

- \Varangle between the observer's local meridian (which connects the zenith with the Celestial North Pole) and the RA of a celestial body.
- It indicates how far East/West the object is from the local meridian
- HA > 0 : object is to the West of the meridian (already passed it)
- HA < 0: object still East of local meridian
- When observing, it is useful to consider the HA of an object to characterize its position in the local night sky.

Coordinate system - the celestial sphere

- To define the position of a point on a sphere, need two angles
(1) Horizontal system: alt and azimuth
(2) Equatorial system: declination (DEC) and right ascension (RA)
(3) Ecliptic system: ecliptic latitude (B) and longitude (λ)
- Plane of reference for latitude: ecliptic
- Point of reference for longitude: vernal point (Y)
-> particularly useful for Solar System objects.

Coordinate system - the celestial sphere

- To define the position of a point on a sphere, need two angles
(1) Horizontal system: alt and azimuth
(2) Equatorial system: declination (DEC) and right ascension (RA)
(3) Ecliptic system: ecliptic latitude (B) and longitude (λ)
(4) Galactic system: Galactic latitude (b) and longitude (I)
- Plane of reference for latitude: Galactic equator
- Point of reference for longitude: Sagittarius constellation (Milky Way center)

Coordinate system - the celestial sphere

- To define the position of a point on a sphere, need two angles
(1) Horizontal system: alt and azimuth
(2) Equatorial system: declination (DEC) and right ascension (RA)
(3) Ecliptic system: ecliptic latitude (B) and longitude (λ)
(4) Galactic system: Galactic latitude (b) and longitude (l)

The Horizontal system depends on the observer's location. The Equatorial system does not.

Coordinate system - precession

- As Earth revolves around the Sun, it rotates on its own axis at an angle of 23.5° from vertical (or 66.5° from the ecliptic).
- However, the Earth's rotation axis precesses around the North Pole of the Ecliptic with a period of $\sim 26,000$ years.
- Some direct consequences are shifts in:
- Celestial Poles
- Vernal Point

Coordinate system - precession

- As Earth revolves around the Sun, it rotates on its own axis at an angle of 23.5° from vertical (or 66.5° from the ecliptic).
- However, the Earth's rotation axis precesses around the North Pole of the Ecliptic with a period of $\sim 26,000$ years.
- Some direct consequences are shifts in:
- Celestial Poles
- Vernal Point
-> Equatorial coordinates vary with time -> An object's coordinates need to be corrected for the effect of precession.

$$
\begin{gathered}
360 \circ / 26000 \text { yrs }= \\
0.014 \circ / \mathrm{yr} \times 50 \text { years } \\
=0.70!!
\end{gathered}
$$

Coordinate system - epoch conversion

- Catalogs/Papers provide coordinates with a given epoch (B1950.0 or J2000.0), based on the positions of the poles and vernal point at these times (1950 or 2000)

Need to convert from
one epoch to the other?
https://ned.ipac.caltech.edu/forms/calculator.html

Question:

Considering the just-calculated "ideal RA" for this epoch (2nd week
of July) - which one of these objects is more likely to be accessible for a South-based telescope?

Table 1. Ob			Romero+99		
Object	$\alpha_{1950.0}$	$\delta_{1950.0}$	2	mı	Type
537-441	053721.1	-440645	0.894	16.48	RBL
0637-752	063723.25	-75 1338.2	0.651	15.75	RL
1034-293	103455.9	-29 1827.0	0.312	16.46	RL
1101-232	110111.1	-23 1320.0	0.18	16.	XB
1120-272	112034.2	-27 1335.0	0.389	16.8	RQQ
$1125-305$	112504.0	-30 2814.0	0.673	16.	RQQ
$1127-145$	112735.6	-143254.0	1.18	16.9	RLQ
1144-379	114430.9	-37 5531.0	1.04	16.2	RBL
1157-299	115710.0	-29 5510	0.20	16.	RQQ
1244-255	124406.7	-25 3125.0	0.63	17.4	RLQ
1256-229	125627.6	-22 5428.0	?	17.3	RBL
1349-439	134952.5	-43 5755.0	?	16.3	RBL
1510-089	151008.9	-08 5448.0	0.360	16.54	RLQ
1519-273	151937.3	-27 1930.0	?	17.7	RBL
2005-489	200546.6	-485843.0	0.071	13.	RBL
2155-304	215558.3	-30 2754.0	0.116	13.0	XBL
2200-181	220027.0	-18 1614.0	1.160	15.3	RQQ
2254-204	225400.5	-20 2743.0		16.6	RBL
2316-423	231620.9	-42 2314.0	0.055	16.00	XBL
2340-469	234034.2	-46 5642.0	1.970	16.4	RQQ
2341-444	234108.2	-44 2358.0	1.900	16.5	RQQ
2344-465	234402.3	-46 2910.0	1.890	16.4	RQQ
2347-437	234757.5	-43 4231.0	2.900	16.30	RQ

Coordinate system - epoch conversion

- Catalogs/Papers provide coordinates with a given epoch (B1950.0 or J2000.0), based on the positions of the poles and vernal point at these times (1950 or 2000)

Need to convert from
one epoch to the other?
https://ned.ipac.caltech.edu/forms/calculator.html

- When observing at the telescope, an object's coordinates must always be precessed prior to pointing so that the input coordinates reflect the date/time of observation.

How we measure time

- Local Time
- Based on the Sun's position with respect to the local meridian (that connects the zenith with the celestial north pole)
- International Meridian Conference in Washington (1884)
- 25 countries got together an established a reference meridian (longitude 0°) \rightarrow Meridiano de Greenwich
AM: "Ante" meridian
PM: "Post" meridian

How we measure time

- Local Time
- Local Sidereal time (LST)

How we measure time

- Local Time
- Local Sidereal time (LST)
- LST is based on the positions of stars: which part of the Celestial Sphere is passing through the observer's local meridian at a given time.
- LST corresponds to the right ascension of a celestial body that is just passing through the local meridian.
- To determine the hour angle (HA) of an object, one must simply subtract its RA from the local sidereal time.

$$
\text { LST }=\mathrm{RA}_{\text {obj }}+\mathrm{HA}_{\mathrm{obj}}
$$

How we measure time

- Local Time
- Local Sidereal time (LST)
- Universal Time (UT)
- A time that serves as a reference for all observers on Earth.
- Approximately equivalent to local time in Greenwich, UK (GMT = Greenwhich Mean Time)

$$
\mathrm{UT}=\mathrm{HA}_{\text {Sun in Greenwich }}+/-12^{\mathrm{h}}
$$

(so that midnight in Greenwich corresponds to $\mathrm{UT}=0^{\mathrm{h}}$)

How we measure time

- Local Time
- Local Sidereal time (LST)
- Universal Time (UT)
- Julian Date (JD)
- A system that counts time in units of days exclusively
- Bypass the graphically-complex system of day/month/year/ leap year, etc.
- Day 0: January 1, 4713 BC
- Modified Julian Date (MJD) = JD - 2.400.000,5
\rightarrow Days since 17-nov-1858

How we measure time

- Local Time
- Local Sidereal time (LST)
- Universal Time (UT)
- Julian Date (JD)
- Convenient in the context of transient events (e.g., supernovae), planet transit, stellar variability, etc.

How we measure time

- Local Time
- Local Sidereal time (LST)
- Universal Time (UT)
- Julian Date (JD)
- Convenient in the context of transient events (e.g., supernovae), planet transit, stellar variability, etc.

Image Quality: the Point-Spread Function (PSF)

- Ideally, a telescope focusses parallel light rays onto a perfect point.
- In reality, the resulting image is "blurred out" around this ideal focussed point \rightarrow this dispersion is characterized by the PSF.
- The PSF describes the angular resolution of a telescope.

http://hyperphysics. phy-astr.gsu.edu/hbase/geoopt/aber2.html

Image Quality: the Point-Spread Function (PSF)

- Many effects contribute to the PSF of an instrument:
- Limit of diffraction (given by the Rayleigh criterion)
- Atmospheric turbulence (seeing)
- Aberrations due to the collection of lenses/mirrors used
- These can be minimized

Image Quality: Diffraction limit

- Diffraction occurs when light encounters obstacles along its path.
- In telescopes - which are composed of a large metallic structure that holds a finite, round aperture, a secondary mirror, etc. light interacts with walls and edges in the structure.
- Although stars are ideally point sources (due to their large distances), even in the best conditions the resulting image is that of a diffraction pattern: a disk of finite size (Airy disk) and diffraction rings of lower brightness.

Image Quality: Rayleigh Criterion

- Two objects are considered to be spatially resolved (i.e., distinguishable from each other) if the distance between the diffraction pattern maxima is larger than the distance to the first minimum.
- Rayleigh Criterion:
- The first minimum is a distance d_{0} from the center of the Airy Disk:

$$
\begin{aligned}
& d_{0}=1.22 \lambda / D \\
& \sim \\
& \quad \lambda / D \\
& \text { where: } \\
& D=\text { telescope's aperture } \\
& D, \lambda \text { [same units] } \\
& \\
& d_{0}=\text { angular resolution }
\end{aligned}
$$

Image Quality: Rayleigh Criterion

- Two objects are considered to be spatially resolved (i.e., distinguishable from each other) if the distance between the diffraction pattern maxima is larger than the distance to the first minimum.

(a) Single-object diffraction pattern
(b) Two diffraction patterns \rightarrow objects are resolved
(c) Objects are NOT resolved
http://micro.magnet.fsu.edu/primer/anatomy/numaperture.html

Image Quality: the Point-Spread Function (PSF)

- Many effects contribute to the PSF of an instrument:
- Limit of diffraction $\rightarrow-\lambda / D$
- dominates the PSF at larger λ (e.g., radio)
- as we'll see, the impact of atmospheric turbulence is insignificant at these wavebands
- Example: $\mathrm{HI}(21 \mathrm{~cm})$ observations with Arecibo (D~300m)
- Limit of diffraction: ~ 0.0007 radians ~ 2 arcmins
- Atmospheric Turbulence (seeing)
- In optical/near-IR observations taken with ground-based telescopes, biggest contributor to PSF size \rightarrow limits the angular resolution of images
- Typical (good) seeing ~1"

Image Quality: seeing

- Turbulence in atmosphere causes small-scale temperature and density inhomogeneities \rightarrow refraction index varies along the light rays' trajectory \rightarrow random changes in the light ray direction (timescales $\sim 10 \mathrm{~ms}$)

The apparent position of the celestial body changes in small timescales
\rightarrow Stars twinkle!
http://spiff.rit.edu/classes/phys445/lectures/atmos/atmos.html

Image Quality: seeing

Short images
(apparent position changes!)

What about planets? Do they twinkle?
Apparent size of planets is larger than that of stars \rightarrow small changes in the apparent position go undetected
\rightarrow Planetas do not twinkle!

As time goes by \rightarrow sum of the apparent positions form a disk

Image Quality: seeing

- The multiple images of the star "dance" within the FOV
- The source spreads into an apparent disk ("seeing disk")

Effect of "Seeing"

Mars on Different Nights

Image Quality: seeing

Short images

- The multiple images of the star "dance" within the FOV
- The source spreads into an apparent disk ("seeing disk")
- Distribution of light within this disk is well fit by a gaussian curve:
(apparent position changes!)

As time goes by \rightarrow sum of the apparent positions form a disk

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)}
$$

$F W H M=2.355 \sigma$

Image Quality: seeing

Short images

(apparent position changes!)

- We quantify the seeing using the size of the FWHM of the gaussian fit to the PSF
- FWHM = seeing
- "good seeing" \rightarrow small FWHM (<1")
- "bad seeing" \rightarrow large FWHM(>1")

As time goes by \rightarrow sum of the apparent positions form a disk

Image Quality: seeing

Better seeing

Worse seeing

Seeing: wavelength (λ) dependence

- Snell's law:

Light deflection (θ) depends on the index of refraction

- A material's index of refraction varies with $\lambda \rightarrow$
dispersion
http: / /exoplanet.as.arizona.edu/~lclose/a302/lecture14/lecture_14.html

Seeing: wavelength (λ) dependence

- Snell's law:

Light deflection (θ) depends on the index of refraction

- A material's index of refraction varies with $\lambda \rightarrow$ dispersion

n decreases with increasing λ

Which λ is more affected?
http: / / exoplanet.as.arizona.edu/~Iclose/a302/lecture14/lecture_14.html

Seeing: wavelength (λ) dependence

- The disk extension due to seeing is smaller in redder bands \rightarrow bluer bands are more affected by seeing (i.e., for the same atmospheric conditions, the resulting PSF is larger)

PSF and seeing

- The angular resolution of ground-based telescopes is limited by the seeing.

Magellan Telescopes guidecam Seeing

$\begin{gathered} \text { Local Time Date } 2013: \text { May } \% 8 \text { Submit } \end{gathered}$	

Corrigido pela massa de ar:
$\mathrm{FWHM}_{\text {corr }}=\mathrm{FWHM}_{\text {obs }} /$ airmass $^{0.6}$

What about space-based telescopes?

Beating down atmospheric effects from the ground

- Adaptive Optics (AO) - a technique based on the use of deformable mirrors to correct for distortions that atmosphere produces in observed image
- Improves angular resolution down to the diffraction limit

Binary star IW Taurus with the Hale/Palomar Telescope

WITHOUT AO
WITH AO

Adaptive Optics (AO)

- beating down atmospheric effects from the ground

https://www.youtube.com/watch?v=3BpT tXYy I

