41+ ISYA Lecturer: Gustavo Bruzual, IRyA, UNAM; Campus Morelia, México
Topic: GALAXIES (6 lectures)

Description: An overview of the basic properties of galaxies due to the distribution, kinematics, dynamics,
relevance, and evolution of their different stellar populations. A view of the basic properties and
processes in the distant universe as revealed by galaxies of all types discovered so far.

Syllabus:

Lecture 1: The Milky Way as a galaxy
* The structure of the Galaxy
* The galactic disk
* The galactic bulge
* The galactic halo
* The galactic center
* Velocity of the sun
* Rotation curve of the Galaxy
« Stellar populations in the Galaxy

Lecture 2: The world of galaxies (1)
* Morphological classification. The Hubble Sequence
* Other types of galaxies
* Elliptical galaxies
+ Spiral galaxies
+ Galaxies in the local group
+ Scaling relations

Lecture 3: The world of galaxies (2)
* The extragalactic distance scale
* The luminosity function of galaxies
* Black holes in the centers of galaxies
+ Galaxies as gravitational lenses
« Stellar population synthesis
+ Spectral evolution of galaxies
+ Chemical evolution of galaxies

Lecture 4: Clusters and groups of galaxies
* The local group
+ Galaxies in clusters and groups
* Morphological classification of clusters
+ Spatial distribution of galaxies in clusters
+ Luminosity function of cluster galaxies
+ Clusters of galaxies as gravitational lenses
* Evolution of clusters

Lecture 5: Galaxies at high redshift (1)
* Lyman-break galaxies
« Starburst galaxies
+ Extremely red objects
+ Sub-millimeter sources
* Damped Lyman-alpha systems
* Lyman-alpha blobs
* Gamma-ray bursts

Lecture 6: Galaxies at high redshift (2)
+ Background radiation
* Re-ionization of the universe
+ Cosmic star formation history
+ Galaxy formation and evolution

Requirements: Video projector in the class room

Bibliography:
 Schneider, Extragalactic astronomy and cosmology
+ Sparke & Gallager, Galaxies in the Universe
* Mo, van den Bosch & White, Galaxy formation and evolution (selected chapters)
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Morphological Classification (The Hubble sequence)

Q“ a\®

o™

Obviously, the morphological classification 1s at least
partially affected by projection effects. If, for instance,
the spatial shape of an elliptical galaxy is a triaxial

,/_/@ T @’/ ellipsoid, then the observed ellipticity € will depend on
Elliptical Galaxies @ \

SO /
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® [Elliptical galaxies (E’s) are galaxies that have nearly

elliptical isophotes! without any clearly defined
structure. They are subdivided according to their

ellipticity € =1 —b/a, where a and b denote the
semimajor and the semiminor axes, respectively. El-
lipticals are found over a relatively broad range in
ellipticity, 0 < € < 0.7. The notation En is commonly
used to classify the ellipticals with respect to e,
with n = 10€; 1.e., an E4 galaxy has an axis ratio
of b/a = 0.6, and EO’s have circular isophotes.

SO galaxies are a transition between ellipticals and
spirals. They are also called lenticulars as they are
lentil-shaped galaxies which are likewise subdivided
into SO and SBO, depending on whether or not they
show a bar. They contain a bulge and a large en-
veloping region of relatively unstructured brightness
which often appears like a disk without spiral arms.
Ellipticals and SO galaxies are referred to as early-
type galaxies, spirals as late-type galaxies. As before,
these names are only historical and are not meant to
describe an evolutionary track!

‘ its orientation with respect to the line-of-sight. Also,
Se m ol it will be difficult to identify a bar in a spiral that is
observed from its side (“edge-on”).

Sb

Spiral Galaxies

SBD 1Bm e

T — B
_— .3/
- Fig. 3.2. Hubl

rle’s “tuning fork™ for galaxy
classification

® Spiral galaxies consist of a disk with spiral arm struc-
ture and a central bulge. They are divided into two
subclasses: normal spirals (S’s) and barred spirals
(SB’s). In each of these subclasses, a sequence is de-
fined that is ordered according to the brightness ratio
of bulge and disk, and that is denoted by a, ab, b,
bc, ¢, cd, d. Objects along this sequence are often re-
ferred to as being either an early-type or a late-type;
hence, an Sa galaxy is an early-type spiral, and an
SBc galaxy is a late-type barred spiral. We stress ex-
plicitly that this nomenclature is not a statement of
the evolutionary stage of the objects but is merely
a nomenclature of purely historical origin.

® [rregular galaxies (Irr’s) are galaxies with only weak
(Irr I) or no (Irr II) regular structure. The classi-
fication of Irr’s is often refined. In particular, the
sequence of spirals is extended to the classes Sdm,
Sm, Im, and Ir (m stands for Magellanic; the Large
Magellanic Cloud is of type SBm).
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3.2 Elliptical Galaxies

3.21 Classification Thus elliptical galaxies span an enormous range (more

than 10°) in luminosity and mass, as is shown by the

The general term “elliptical galaxies™ (or ellipticals, for e
compilation in Table 3.1.

short) covers a broad class of galaxies which differ in
their luminosities and sizes —some of them are displayed
in Fig. 3.5. A rough subdivision is as follows:

T —

o chgalaxies. These are extremeiy luminous (up to
Mp ~ —25) and large (up to R < 1 Mpc) galaxies
that are only found near the centers of dense clusters

® Normal ellipticals. This class includes giant ellipti-
cals (gE’s), those of intermediate luminosity (E’s),
and compact ellipticals (cE’s), covering a range in

absolute magnitudes from Mp ~ —23 to Mp ~ —15.
In addition, SO galaxies are often assigned to this
class of early-type galaxies.

Dwarf ellipticals (dE’s). These differ from the cE’s
in that they have a significantly smaller surface
brightness and a lower metallicity.

of galaxies. Their surface brightness is very high
close to the center, they have an extended diffuse
envelope, and they have a very high M/L ratio.

® Blue compact dwarf galaxies. These “blue compact

dwarfs” (BCD’s) are clearly bluer (with (B — V') be-
tween 0.0 and 0.3) than the other ellipticals, and

contain an appreciable amount of gas in comparison.

® Dwarf spheroidals (dSph’s) exhibit a very low lu-
minosity and surface brightness. They have been
observed down to Mz ~ —8. Due to these proper-
ties, they have thus far only been observed in the
Local Group.

visual luminosity (see (3.13)), and M/L is the mass-to-light
ratio in Solar units (the values of this table are taken from the
book by Carroll & Ostlie, 1996)

Table 3.1. Characteristic values for elliptical galaxies. D»s
denotes the diameter at which the surface brightness has de-
creased to 25 B-mag /arcsec?, Sy is the “specific frequency”,
a measure for the number of globular clusters in relation to the

SO ¢D E dE dSph BCD
Mp —17to =22 —22t0 —25 —~15t0 =23 ~13t0 —19 ~81to0 —15 —~14t0—17
M(Mg) 1010 to 1012 1013 to 1014 108 to 1013 107 to 10° 107 to 108 ~10°
D>s (kpe) 10-100 300-1000 1-200 1-10 0.1-0.5 <3
(M/Lg) ~ 10 > 100 10-100 1-10 5-100 0.1-10
(SN) ~5 ~ 15 ~5 4.84+1.0 - =
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3.2.2 Brightness Profile

The brightness profiles of normal E’s and ¢D’s follow
a de Vaucouleurs profile (see (2.39) or (2.41), respec-
tively) over a wide range in radius, as is demonstrated
in Fig.3.6. The effective radius R, is strongly corre-
lated with the absolute magnitude Mp, as can be seen
in Fig. 3.7, with rather little scatter. In comparison, the
dE’s and the dSph’s clearly follow a different distribu-
tion. Owing to the relation (2.42) between luminosity,
effective radius and central surface brightness, an anal-
ogous relation exists for the average surface brightness
Mave (unit: B — mag/arcsecz) within R. as a function of
M. In particular, the surface brightness in normal E’s
decreases with increasing luminosity, while it increases
for dE’s and dSph’s.

Yet another way of expressing this correlation is
by eliminating the absolute luminosity, thus obtain-
ing a relation between effective radius R. and surface
brightness tave. This form is then called the Kormendy
relation.

The de Vaucouleurs profile provides the best fits for
normal E’s, whereas for E’s with exceptionally high (or
low) luminosity the profile decreases more slowly (or
rapidly) for larger radii. The profile of cD’s extends
much farther out and is not properly described by a de
Vaucouleurs profile (Fig.3.8), except in its innermost
part. It appears that cD’s are similar to E’s but embed-
ded in a very extended, luminous halo. Since cD’s are
only found in the centers of massive clusters of galax-
ies, a connection must exist between this morphology
and the environment of these galaxies. In contrast to
these classes of ellipticals, diffuse dE’s are often better
described by an exponential profile.

u [mag /arcsecz]

24 — — de Vaucouleurs Law . o ]
| | | ! | ! | ! |
1 2 3 4 5

pl/4 [arcsec]

Fig. 3.6. Surface brightness profile of the galaxy NGC 4472,
fitted by a de Vaucouleurs profile. The de Vaucouleurs pro-
file describes a linear relation between the logarithm of the
intensity (i.e., linear on a magnitude scale) and r1/4; for this
reason, it is also called an r!/4-law
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Fig. 3.8. Comparison of the brightness profile of a cD galaxy,
the central galaxy of the cluster of galaxies Abell 2670, with
a de Vaucouleurs profile. The light excess for large radii is
clearly visible



1.5

GiantE's  + ) GiantE's =+ ) )
Intermed. E’s x 18F Intermed.E’s x
Bright dE’s  x Bright dE's
1} CompactE’s o Py CompactE's =
dSph's . 8 dSph's .
Bulges ° 8 20F Bulges °
g @
X 0.5 5 ~
= S 22t
=2 £
> m
S Of <
2 24}
=
-0.5 26}
_1 1 M M M M 2 M M 28 M M M M 2 2 2 M
-6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24
Mg Mg
Fig.3.7. Left panel: effective radius R, versus absolute mag-  pave versus Mp; for normal ellipticals, the surface bright-

nitude Mp; the correlation for normal ellipticals is different  ness decreases with increasing luminosity while for dwarfs it
from that of dwarfs. Right panel: average surface brightness  increases

22



3.2.4 Dynamics of Elliptical Galaxies

Analyzing the morphology of elliptical galaxies raises
asimple question: Why are ellipticals not round? A sim-
ple explanation would be rotational flattening, i.e., as in

a rotating self-gravitating gas ball, the stellar distribu-
tion bulges outwards at the equator due to centrifugal

forces, as is also the case for the Earth. If this explana-
tion were correct, the rotational velocity vy, which is
measurable in the relative Doppler shift of absorption
lines, would have to be of about the same magnitude
as the velocity dispersion of the stars o, that is mea-
surable through the Doppler broadening of lines. More
precisely, by means of stellar dynamics one can show
that for the rotational flattening of an axially symmetric,
oblate? galaxy, the relation

(Q> ~ [ S 3.1
Gv iSO 1_6

has to be satisfied, where “iso” indicates the assumption
of an isotropic velocity distribution of the stars. How-
ever, for luminous ellipticals one finds that, in general,
Vrot K 0y, SO that rotation cannot be the major cause of
their ellipticity (see Fig.3.9). In addition, many ellip-
ticals are presumably triaxial, so that no unambiguous
rotation axis is defined. Thus, luminous ellipticals are
in general not rotationally flattened. For less luminous
ellipticals and for the bulges of disk galaxies, however,
rotational flattening can play an important role. The
question remains of how to explain a stable elliptical
distribution of stars without rotation.
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Relaxation Time-Scale. The question now arises
whether such an equilibrium system can also be sta-
ble in time. One might expect that close encounters of
pairs of stars would cause a noticeable disturbance in the
distribution of orbits. These pair-wise collisions could
then lead to a “thermalization” of the stellar orbits.’
To examine this question we need to estimate the time-
scale for such collisions and the changes in direction
they cause.

For this purpose, we consider the relaxation time-
scale by pair collisions in a system of N stars of mass m,
total mass M = Nm, extent R, and a mean stellar density
of n = 3N/(47R?). We define the relaxation time ey
as the characteristic time in which a star changes its
velocity direction by ~ 90° due to pair collisions with
other stars. By simple calculation (see below), we find
that

R N
Irelax ~ ;ﬁ ’ (32)
or
N
Irelax = tcrossﬁ s (33)

where #.o5s = R/v 1s the crossing time-scale, i.e., the
time it takes a star to cross the stellar system. If we now
consider a typical galaxy, with f¢;oss ~ 108 yr, N ~ 10'2
(thus In N ~ 30), then we find that the relaxation time is
much longer than the age of the Universe. This means
that pair collisions do not play any role in the evolution
of stellar orbits. The dynamics of the orbits are deter-
mined solely by the large-scale gravitational field of the
galaxy. In Sect. 7.5.1, we will describe a process called
violent relaxation which most likely plays a central
role in the formation of galaxies and which is proba-
bly also responsible for the stellar orbits establishing an
equilibrium configuration.

The stars behave like a collisionless gas: elliptical
galaxies are stabilized by (dynamical) pressure, and

they are elliptical because the stellar distribution is
anisotropic in velocity space. This corresponds to an

anisotropic pressure — where we recall that the pressure
of a gas is nothing but the momentum transport of gas
particles due to their thermal motions.
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Boxiness and Diskiness. The so-called boxiness par-
ameter describes the deviation of the isophotes’ shape
from that of an ellipse. Consider the shape of an
isophote. If it is described by an ellipse, then after
a suitable choice of the coordinate system, 6, = a cos ¢,
0, = bsint, where a and b are the two semi-axes of
the ellipse and ¢ € [0, 2] parametrizes the curve. The
distance r(#) of a point from the center is

240102 22
r(t)=,/912+9§=\/a; +“l2 cos(21) .

Deviations of the isophote shape from this ellipse
are now expanded in a Taylor series, where the term
o cos(4t) describes the lowest-order correction that
preserves the symmetry of the ellipse with respect to re-
flection in the two coordinate axes. The modified curve
is then described by

0(t) = (1 +CM) (ac?st) , (3.9)
r(1) bsint

with r(#) as defined above. The parameter a4 thus
describes a deviation from an ellipse: if a4 > 0, the
isophote appears more disk-like, and if a4 < 0, it be-
comes rather boxy (see Fig.3.11). In elliptical galaxies
we typically find |ag/a| ~ 0.01, thus only a small
deviation from the elliptical form.
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Fig. 3.11. Sketch toillustrate boxiness and diskiness. The solid
red curve shows an ellipse (a4 = 0), the green dashed curve
a disky ellipse (a4 > 0), and the blue dotted curve a boxy
ellipse (a4 < 0). In elliptical galaxies, the deviations in the
shape of the isophotes from an ellipse are considerably smaller
than in this sketch




Correlations of a4 with Other Properties of Ellip-
ticals. Surprisingly, we find that the parameter a4/a is
strongly correlated with other properties of ellipticals

(see Fig.3.12). The ratio ('“(;—"l> / (M) (upper left
v iso

oy
in Fig. 3.12) is of order unity for disky ellipses (a4 > 0)
and, in general, significantly smaller than 1 for boxy
ellipticals. From this we conclude that “diskies” are
in part rotationally supported, whereas the flattening
of “boxies” is mainly caused by the anisotropic dis-
tribution of their stellar orbits in velocity space. The
mass-to-light ratio is also correlated with a4: boxies
(diskies) have a value of M/L in their core which
is larger (smaller) than the mean elliptical of com-
parable luminosity. A very strong correlation exists
between as/a and the radio luminosity of ellipticals:
while diskies are weak radio emitters, boxies show
a broad distribution in L;.4io. These correlations are
also seen in the X-ray luminosity, since diskies are
weak X-ray emitters and boxies have a broad distribu-
tion in L. This bimodality becomes even more obvious
if the radiation contributed by compact sources (e.g.,
X-ray binary stars) is subtracted from the total X-ray
luminosity, thus considering only the diffuse X-ray
emission. Ellipticals with a different sign of a4 also dif-
fer in the kinematics of their stars: boxies often have
cores spinning against the general direction of rota-
tion (counter-rotating cores), which is rarely observed
in diskies.

About 70% of the ellipticals are diskies. The transi-
tion between diskies and SO galaxies may be continuous
along a sequence of varying disk-to-bulge ratio.
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Fig. 3.12. Correlations of a4/a with some
other properties of elliptical galaxies.
100a(4)/a (corresponding to ay/a) de-
scribes the deviation of the isophote shape
from an ellipse in percent. Negative val-
ues denote boxy ellipticals, positive values
disky ellipticals. The upper left panel
shows the rotation parameter discussed
in Sect. 3.2.4; at the lower left, the devi-
ation from the average mass-to-light ratio is
shown. The upper right panel shows the el-
lipticity, and the lower right panel displays
the radio luminosity at 1.4 GHz. Obviously,
there is a correlation of all these parameters
with the boxiness parameter



Shells and Ripples. In about 40% of the early-type
galaxies that are not member galaxies of a cluster,
sharp discontinuities in the surface brightness are found,
a kind of shell structure (“shells” or “ripples”). They
are visible as elliptical arcs curving around the center
of the galaxy (see Fig.3.13). Such sharp edges can only
be formed if the corresponding distribution of stars is
“cold”, 1.e., they must have a very small velocity dis-
persion, since otherwise such coherent structures would
smear out on a very short time-scale. As a compari-
son, we can consider disk galaxies that likewise contain
sharp structures, namely the thin stellar disk. Indeed,
the stars in the disk have a very small velocity disper-
sion, ~ 20 km/s, compared to the rotational velocity of
typically 200 km/s.

These peculiarities in ellipticals are not uncommon.
Indicators for shells can be found in about half of the
early-type galaxies, and about a third of them show boxy
isophotes.
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Boxiness, counter-rotating cores, and shells and
ripples are all indicators of a complex evolution
that is probably caused by past mergers with other
galaxies.

Fig.3.13. In the galaxy NGC 474, here
shown in two images of different contrast,
a number of sharp-edged elliptical arcs are
visible around the center of the galaxy, the
so-called ripples or shells. The displayed
image corresponds to a linear scale of about
90 kpc



3.3 Spiral Galaxies

3.3.1 Trends in the Sequence of Spirals

Looking at the sequence of early-type spirals (i.e., Sa’s
or SBa’s) to late-type spirals, we find a number of dif-
ferences that can be used for classification (see also
Fig.3.14):

® a decreasing luminosity ratio of bulge and disk, with
Liuige/ Laisk ~ 0.3 for Sa’s and ~ 0.05 for Sc’s;

® an increasing opening angle of the spiral arms, from
~ 6° for Sa’s to ~ 18° for Sc’s;

e andan increasing brightness structure along the spiral
arms: Sa’s have a “smooth” distribution of stars along
the spiral arms, whereas the light distribution in the
spiral arms of Sc’s is resolved into bright knots of
stars and HII regions.

Compared to ellipticals, the spirals cover a distinctly
smaller range in absolute magnitude (and mass). They
are limited to —16 2 Mg = —23 and 10°M, < M <
102 M, respectively. Characteristic parameters of the
various types of spirals are compiled in Table 3.2.

Bars are common in spiral galaxies, with ~70%
of all disk galaxies containing a large-scale stellar bar.
Such a bar perturbs the axial symmetry of the gravita-
tional potential in a galaxy, which may have a number
of consequences. One of them is that this perturbation
can lead to a redistribution of angular momentum of
the stars, gas, and dark matter. In addition, by perturb-
ing the orbits, gas can be driven towards the center of
the galaxy which may have important consequences for
triggering nuclear activity (see Chap.5).

Table 3.2. Characteristic values for spiral galaxies. Vi 18 the
maximum rotation velocity, thus characterizing the flat part
of the rotation curve. The opening angle is the angle under
which the spiral arms branch off, i.e., the angle between the

tangent to the spiral arms and the circle around the center of the
galaxy running through this tangential point. Sy is the specific
abundance of globular clusters as defined in (3.13). The values
in this table are taken from the book by Carroll & Ostlie (1996)

Sa Sb
Mpg -17 to -23 -17to -23
M (Mg) 1071012 1071012
(Lbulgc/Llol) B 0.3 0.13
Diam. (Dys, kpc) 5-100 5-100
(M/LB) (Mg /L) 6.2+0.6 45+0.4
(Vimax)(kms™!) 299 222
Vinaxrange (kms ™) 163-367 144-330
Opening angle ~ 6° ~ 12°
to.p (mag arcsec™2) 21.5240.39 21.5240.39
(B—V) 0.75 0.64
(Mgas /Mior) 0.04 0.08
(Mu, / Mur) 2.240.6 (Sab) 1.84+0.3
(SN) 1.240.2 1.240.2

Sc Sd/Sm In/Ir
—-16to —22 —~15t0 —-20 —13t0 —18
10°-10"2 108-1010 108-1010
0.05 - -
5-100 0.5-50 0.5-50
2.6+0.2 ~1 ~ 1
175 - -
99-304 - 5070
~ ]18° — —
21.5240.39 22.6140.47 22.61 +0.47
0.52 0.47 0.37
0.16 0.25 (Scd) -
0.734+0.13 0.194+0.10 -
0.54+0.2 0.54+0.2 -



3.3.2 Brightness Profile

The light profile of the bulge of spirals is described by
a de Vaucouleurs profile to a good approximation — see
(2.39) and (2.41) — while the disk follows an exponential
brightness profile, as is the case for our Milky Way. Ex-
pressing these distributions of the surface brightness in
o< —2.5log(I), measured in mag/arcsec’, we obtain

(&

R\ /4
Huige (R) = juc +8.3268 [(R—) - 1} (3.10)

and

R
Mdisk(R)=,uo+l.O9<h—) . (3.11)

Here, u. is the surface brightness at the effective ra-
dius R. which is defined such that half of the luminosity
is emitted within R. (see (2.40)). The central surface
brightness and the scale-length of the disk are denoted
by wno and h,, respectively. It has to be noted that i
is not directly measurable since p( is not the central
surface brightness of the galaxy, only that of its disk
component. To determine 1, the exponential law (3.11)
is extrapolated from large R inwards to R = 0.

Whereas the bulge and the disk can be studied in
spirals even at fairly large distances, the stellar halo
has too low a surface brightness to be seen in distant
galaxies. However, our neighboring galaxy M31, the
Andromeda galaxy, can be studied in quite some detail.
In particular, the brightness profile of its stellar halo can
be studied more easily than that of the Milky Way, taking
advantage of our “outside” view. This galaxy should
be quite similar to our Galaxy in many respects; for
example, tidal streams from disrupted accreted galaxies
were also clearly detected in M31.

A stellar halo of red giant branch stars was detected
in M31, which extends out to more than 150 kpc from
its center. The brightness profile of this stellar distri-
bution indicates that for radii r < 20 kpc it follows the
extrapolation from the brightness profile of the bulge,
i.e., ade Vaucouleurs profile. However, for larger radii it
exceeds this extrapolation, showing a power-law profile
which corresponds to a radial density profile of approx-
imately p o r—3, not unlike that observed in our Milky
Way. It thus seems that stellar halos form a generic prop-
erty of spirals. Unfortunately, the corresponding surface
brightness 1s so small that there is little hope of detect-
ing such a halo in other spirals for which individual stars
can no longer be resolved and classified.

The thick disk in other spirals can only be studied if
they are oriented edge-on. In these cases, a thick disk
can indeed be observed as a stellar population outside
the plane of the disk and well beyond the scale-height
of the thin disk. As is the case for the Milky Way,
the scale-height of a stellar population increases with
its age, increasing from young main-sequence stars to
old asymptotic giant branch stars. For luminous disk
galaxies, the thick disk does not contribute substantially
to the total luminosity; however, in lower-mass disk
galaxies with rotational velocities < 120 km/s, the thick
disk stars can contribute nearly half the luminosity and
may actually dominate the stellar mass. In this case,
the dominant stellar population of these galaxies is old,
despite the fact that they appear blue.
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3.3.3 Rotation Curves and Dark Matter

The rotation curves of other spiral galaxies are easier to
measure than that of the Milky Way because we are able
to observe them “from outside”. These measurements
are achieved by utilizing the Doppler effect, where the
inclination of the disk, i.e., its orientation with respect
to the line-of-sight, has to be accounted for. The in-
clination angle is determined from the observed axis
ratio of the disk, assuming that disks are intrinsically
axially symmetric (except for the spiral arms). Mainly
the stars and HI gas in the galaxies are used as lumi-
nous tracers, where the observable HI disk is in general
significantly more extended than the stellar disk. There-
fore, the rotation curves measured from the 21-cm line
typically extend to much larger radii than those from
optical stellar spectroscopy.

Like our Milky Way, other spirals also rotate con-
siderably faster in their outer regions than one would
expect from Kepler’s law and the distribution of visible
matter (see Fig. 3.15).

The rotation curves of spirals do not decrease for
R > h,, as one would expect from the light distri-
bution, but are basically flat. We therefore conclude
that spirals are surrounded by a halo of dark mat-
ter. The density distribution of this dark halo can be
derived from the rotation curves.
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Fig. 3.15. Examples of rotation curves of spiral galaxies. They
are all flat in the outer region and do not behave as expected
from Kepler’s law if the galaxy consisted only of luminous
matter. Also striking is the fact that the amplitude of the
rotation curve is higher for early types than for late types.




Indeed, the density distribution of the dark matter can
be derived from the rotation curves. The force balance
between gravitation and centrifugal acceleration yields
the Kepler rotation law,

v2(R)=GM(R)/R,

from which one directly obtains the mass M(R) within
aradius R. The rotation curve expected from the visible
matter distribution is*

Uﬁlm(R) —_ GMIum(R)/R .

Mym(R) can be determined by assuming a constant,
plausible value for the mass-to-light ratio of the lu-
minous matter. This value is obtained either from the
spectral light distribution of the stars, together with
knowledge of the properties of stellar populations, or by
fitting the innermost part of the rotation curve (where

the mass contribution of dark matter can presumably
be neglected), assuming that M/L is independent of
radius for the stellar population. From this estimate
of the mass-to-light ratio, the discrepancy between
2 and v? yields the distribution of the dark matter,

vlz“m 2
Viak = V" — Viym = GMqyuk/R, or

R
Maak(R) = = [V (R) — vjn(R)] | (3.12)

An example of this decomposition of the mass contri-
butions is shown in Fig. 3.16.

The corresponding density profiles of the dark matter
halos seem to be flat in the inner region, and decreas-
ing as R~ at large radii. It is remarkable that p oc R~
implies a mass profile M « R, i.e., the mass of the halo
increases linearly with the radius for large R. As long as
the extent of the halo is undetermined the total mass of
a galaxy will be unknown. Since the observed rotation
curves are flat out to the largest radius for which 21-cm
emission can still be observed, a lower limit for the ra-
dius of the dark halo can be obtained, Rpa0 2 30hn! kpc.
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Fig. 3.16. The flat rotation curves of spiral galaxies cannot be
explained by visible matter alone. The example of NGC 3198
demonstrates the rotation curve which would be expected from
the visible matter alone (curve labeled “disk™). To explain the
observed rotation curve, a dark matter component has to be
present (curve labeled “halo”). However, the decomposition
into disk and halo mass is not unambiguous because for it to
be so it would be necessary to know the mass-to-light ratio of
the disk. In the case considered here, a “maximum disk” was
assumed, i.e., it was assumed that the innermost part of the ro-
tation curve is produced solely by the visible matter in the disk



3.4 Scaling Relations

The kinematic properties of spirals and ellipticals
are closely related to their luminosity. As we shall
discuss below, spirals follow the Tully-Fisher rela-
tion (Sect.3.4.1), whereas elliptical galaxies obey the
Faber-Jackson relation (Sect.3.4.2) and are located in

the fundamental plane (Sect. 3.4.3). These scaling rela-
tions are a very important tool for distance estimations,

as will be discussed in Sect.3.6. Furthermore, these
scaling relations express relations between galaxy prop-
erties which any successful model of galaxy evolution
must be able to explain. Here we will describe these
scaling relations and discuss their physical origin.

3.4.1 The Tully-Fisher Relation

Using 21-cm observations of spiral galaxies, in 1977
R. Brent Tully and J. Richard Fisher found that the
maximum rotation velocity of spirals is closely related
to their luminosity, following the relation

Lo, (3.14)

max

-

where the slope of the Tully—Fisher relation is about
a ~ 4. The larger the wavelength of the filter in which
the luminosity is measured, the smaller the dispersion
of the Tully—Fisher relation (see Fig. 3.19). This is to
be expected because radiation at larger wavelengths
is less affected by dust absorption and by the current
star-formation rate, which may vary to some extent be-
tween individual spirals. Furthermore, it is found that
the value of « increases with the wavelength of the fil-
ter; the Tully—Fisher relation is steeper in the red. The
dispersion of galaxies around the relation (3.14) in the
near infrared (e.g., in the H-band) is about 10%.
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Fig.3.19. The Tully-Fisher relation for galaxies in the Lo-
cal Group (dots), in the Sculptor group (triangles), and in the
MB&8I1 group (squares). The absolute magnitude is plotted as
a function of the width of the 21-cm profile which indicates
the maximum rotation velocity (see Fig. 3.20). Filled symbols
represent galaxies for which independent distance estimates
were obtained, either from RR Lyrae stars, Cepheids, or plan-
etary nebulae. For galaxies represented by open symbols, the
average distance of the respective group is used. The solid line
is a fit to similar data for the Ursa-Major cluster, together with
data of those galaxies for which individual distance estimates
are available (filled symbols). The larger dispersion around
the mean relation for the Sculptor group galaxies is due to the
group’s extent along the line-of-sight
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Fig.3.20. 21 cm profile of the galaxy NGC 7331. The bold
dots indicate 20% and 50% of the maximum flux; these are of
relevance for the determination of the line width from which
the rotational velocity is derived

Because of this close correlation, the luminosity of
spirals can be estimated quite precisely by measur-
ing the rotational velocity. The determination of the
(maximum) rotational velocity is independent of the
galaxy’s distance. By comparing the luminosity, as
determined from the Tully—Fisher relation, with the
measured flux one can then estimate the distance of
the galaxy — without utilizing the Hubble relation!

The measurement of v, is obtained either from
a spatially resolved rotation curve, by measuring v, (0),
which is possible for relatively nearby galaxies, or by
observing an integrated spectrum of the 21-cm line of
HI that has a Doppler width corresponding to about
2umax (see Fig. 3.20). The Tully—Fisher relation shown
in Fig. 3.19 was determined by measuring the width of
the 21-cm line.



where the distance R from the center of the galaxy
refers to the flat part of the rotation curve. The exact
value is not important, though, if only v(R) & const. By
re-writing (3.15),

Explaining the Tully-Fisher Relation. The shapes of
the rotation curves of spirals are very similar to each
other, in particular with regard to their flat behavior in
the outer part. The flat rotation curve implies

M\ v R
L= (—) Jmax T (3.16)
L G
M= vﬁme (3.15) and replacing R by the mean surface brightness (/) =
G ' L/R?, we obtain

M\ /[ 1 A
= () () e 517

This is the Tully—Fisher relation if M/L and (/) are the
same for all spirals. The latter is in fact suggested by

_ _ Freeman’s law (Sect. 3.3.2). Since the shapes of rota-
:q = tion curves for spirals seem to be very similar, the radial
dependence of the ratio of luminous to dark matter may
o o also be quite similar among spirals. Furthermore, since
= 2 the red or infrared mass-to-light ratios of a stellar pop-
A = ulation do not depend strongly on its age, the constancy
= 3 = 3 of M/L could also be valid if dark matter is included.
s =< Although the line of argument presented above is far
- . from a proper derivation of the Tully—Fisher-relation,
2 = it nevertheless makes the existence of such a scaling
relation plausible.
© ©
) -
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Fig.3.21. Left panel: the mass contained in stars as a func-
tion of the rotational velocity V. for spirals. This stellar mass
is computed from the luminosity by multiplying it with a suit-
able stellar mass-to-light ratio which depends on the chosen
filter and which can be calculated from stellar population mod-
els. This is the “classical” Tully—Fisher relation. Squares and
circles denote galaxies for which V. was determined from the
21-cm line width or from a spatially resolved rotation curve,

respectively. The colors of the symbols indicate the filter band
in which the luminosity was measured: H (red), K’ (black), I
(green), B (blue). Right panel: instead of the stellar mass, here
the sum of the stellar and gaseous massis plotted. The gas mass
was derived from the flux in the 21-cm line, Mg,s = 1.4Myq,
corrected for helium and metals. Molecular gas has no signif-
icant contribution to the baryonic mass. The line in both plots
is the Tully—Fisher relation with a slope of « =4
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3.4.2 The Faber-Jackson Relation

Acrelation for elliptical galaxies, analogous to the Tully—
Fisher relation, was found by Sandra Faber and Roger
Jackson. They discovered that the velocity dispersion in
the center of ellipticals, oy, scales with luminosity (see

Fig. 3.22),

4
L « o

-

or

log(og) = —0.1Mp + const

(3.20)

“Deriving” the Faber—Jackson scaling relation is pos-
sible under the same assumptions as the Tully—Fisher
relation. However, the dispersion of ellipticals about
this relation is larger than that of spirals about the

Tully-Fisher relation.
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Fig. 3.22. The Faber-Jackson relation expresses a relation be-
tween the velocity dispersion and the luminosity of elliptical

galaxies. It can be derived from the virial theorem
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3.4.3 The Fundamental Plane

The Tully—Fisher and Faber—Jackson relations specify
a connection between the luminosity and a kinematic
property of galaxies. As we discussed previously, vari-
ous relations exist between the parameters of elliptical
galaxies. Thus one might wonder whether a relation ex-
ists between observables of elliptical galaxies for which
the dispersion is smaller than that of the Faber—Jackson
relation. Such a relation was indeed found and is known
as the fundamental plane.

To explain this relation, we will consider the vari-
ous relations between the parameters of ellipticals. In
Sect. 3.2.2 we saw that the effective radius of normal el-
lipticals is related to the luminosity (see Fig.3.7). This
implies a relation between the surface brightness and
the effective radius,

Rc X <1)—().83 ,

(&

(3.21)

where (/). is the average surface brightness within the
effective radius, so that

L =27R>(I), (3.22)

Hence, more luminous ellipticals have smaller surface
brightnesses, as is also shown in Fig.3.7. By means
of the Faber—Jackson relation, L is related to oy, the
central velocity dispersion, and therefore, oy, (/)., and
R. arerelated to each other. The distribution of elliptical
galaxies in the three-dimensional parameter space (R,
(I)., 09) 1s located close to a plane defined by

1.4 <[> —0.85

Writing this relation in logarithmic form, we obtain

log Re =0.34 (u). + 1.41log oy +const |, (3.25)

where (u). 1s the average surface brightness within
R., measured in mag/ arcsec’. Equation (3.25) defines
a plane in this three-dimensional parameter space that
is known as the fundamental plane (FP). Different
projections of the fundamental plane are displayed in
Fig. 3.23.
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Fig. 3.7. Left panel: effective radius R, versus absolute mag-
nitude Mp; the correlation for normal ellipticals is different
from that of dwarfs. Right panel: average surface brightness

Have versus Mp; for normal ellipticals, the surface bright-
ness decreases with increasing luminosity while for dwarfs it
increases
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Projections of the Fundamental Plane
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The Fundamental Plane

How can this be Explained? The mass within R, can be

derived from the virial theorem, M ag R.. Combining

this with (3.22) yields
L ag

R. .
M (1),
which agrees with the FP in the form of (3.24) if

(3.26)

2 1.4
Lo o

M (I), . (1985

or

Mo( 0.(()).6 o(M0.3 R3'3 '
L (I>215 R(e)3 L0.15

Hence, the FP follows from the virial theorem provided

M
( f) x M2 or
M 0.25 -
7 o L7, respectively , (3.27)

1.e., if the mass-to-light ratio of galaxies increases
slightly with mass. Like the Tully—Fisher relation, the
fundamental plane is an important tool for distance
estimations. It will be discussed more thoroughly later.
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3.4.4 The D,-o Relation

Another scaling relation for ellipticals which is of sub-
stantial importance in practical applications is the D, —o
relation. D, is defined as that diameter of an ellipse
within which the average surface brightness 7, corre-
sponds to a value of 20.75 mag/arcsec? in the B-band.
If we now assume that all ellipticals have a self-similar
brightness profile, I(R) = I. f(R/R.), with f(1) =1,
then the luminosity within D,, can be written as

Dy /2

D 2
1(7) m=2nl, / dR R f(R/R.)

0
Dy /(2Re)

=2nl.R? f dx x f(x).
0

For a de Vaucouleurs profile we have approximately
f(x) o< x~ 1 in the relevant range of radius. Computing
the integral with this expression, we obtain

D, o< Re 198 . (3.28)

Replacing R, by the fundamental plane (3.24) then re-
sults in

1.4 —0.85 0.8

Since (7). o I, due to the assumed self-similar bright-
ness profile, we finally find

D, ooy 179 1. (3.29)

¢

This implies that D,, is nearly independent of /. and
only depends on oy. The D,—o relation (3.29) de-
scribes the properties of ellipticals considerably better
than the Faber—Jackson relation and, in contrast to the
fundamental plane, it is a relation between only two
observables. Empirically, we find that ellipticals follow
the normalized D,—o relation

Dn 5 05 ( % )"33 (3.30)
kpc " \100km/s ’ '

and they scatter around this relation with a relative width
of about 15%.
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