Particle Acceleration

ElisaBete de Gouveia Dal Pino (IAG - University of São Paulo

ISYA, Socorro, July 2018

Class 4

Part II

CONTENTS

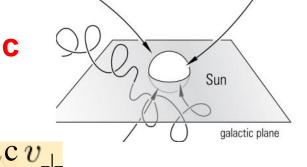
- Introduction
 - Cosmic Rays
- Shock acceleration
 - Mirror Effect
 - 2nd Order Fermi Acceleration (turbulence)
 - Diffusive Shock Acceleration (1st Order Fermi)
- Acceleration in Reconnection zones
- Astrophysical Sites

Accelerated Particles – Cosmic Rays

High energy relativistic charged particles reaching the Earth's atmosphere (CRs):

- electrons $\sim 1\%$
- **protons** ~ 89%
- heavier nuclei, mainly helium $\sim 10\%$
- very few: antiparticles, muons, pions, kaons (from interactions of CRs with the interstellar gas)

COSMIC RAY SPECTRUM


• power law: $N(E) \propto E^{-\gamma}$

 $\begin{aligned} \gamma &= 2.7 \quad \text{for} \quad 10^9 \text{eV} < E < E_{knee}, \\ \gamma &= 3.0 \quad \text{for} \quad E_{knee} < E < E_{ankle}, \\ \gamma &= 2.7 \quad \text{for} \quad E_{ankle} < E < E_{GZK}, \end{aligned}$

CRs and Magnetic Fields

Charged particles – circular orbits in Magnetic Field (MF):

 gyro-radius (cyclotron) for relativistic particles :

p: particle

momentum

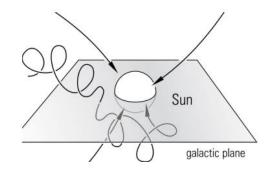
$$\frac{d\vec{p}}{dt} = \underline{q}\mathbf{v} \times \mathbf{B} \quad \longrightarrow \quad r_{g} = \frac{p}{qB} = \frac{\gamma m}{Ze}$$

MKS

CGS

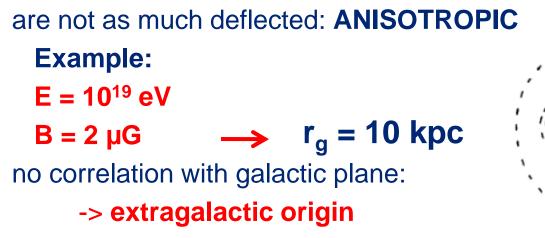
$$\frac{d\vec{p}}{dt} = q\mathbf{v} \times \mathbf{B} \quad \longrightarrow \quad$$

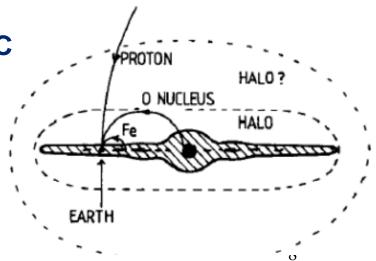
$$r_{\rm g} = \frac{p}{qB} = \frac{\gamma m_{\rm o} v_{\rm o}}{ZeB}$$


 v^2

R

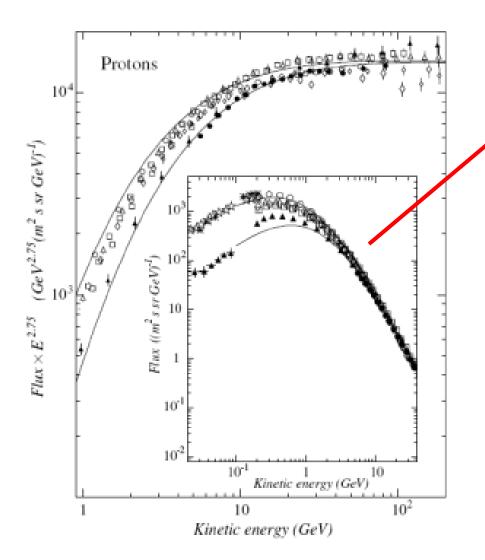
 γ : Lorentz factor


CRs and Magnetic Fields


$$r_{\rm g} = \frac{p}{qB} = \frac{\gamma m v_{\rm int}}{ZeB}$$

CRs with energies < 10¹⁵ eV: sky distribution ISOTROPIC

Higher energy CRs:



What is the origin of the CRs?

What are the acceleration mechanisms?

Ex.: CRs from the Sun

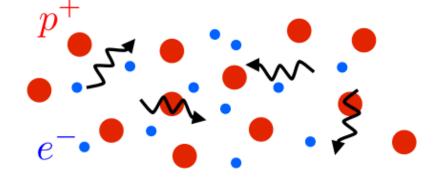
Power law spectrum at high energies

Possible mechanisms:

- Shock acceleration
- Magnetic Reconnection

CONTENTS

- Introduction
- Shock acceleration
 - Mirror Effect
 - 2nd Order Fermi Acceleration (turbulence)
 - Diffusive Shock Acceleration (1st Order Fermi)
- Acceleration in Reconnection zones
- Astrophysical Sites

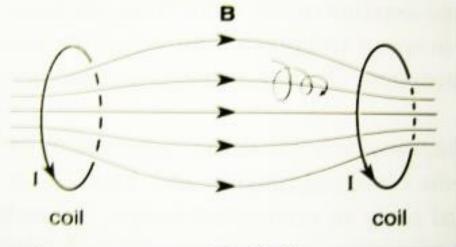

PLASMA & Cosmic Rays

MHD description applicable to most astrophysical plasma species

> BUT: cosmic rays

 \rightarrow need kinetic description

ightarrow and are coupled through waves with rest of the plasma

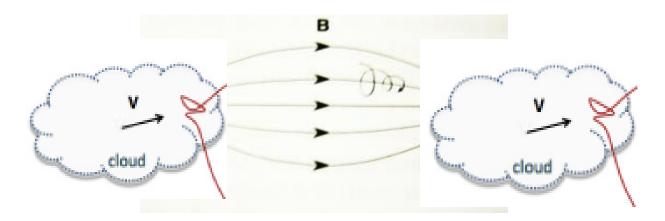

(Tchekhovskoy's cartoon)

MIRROR EFFECT

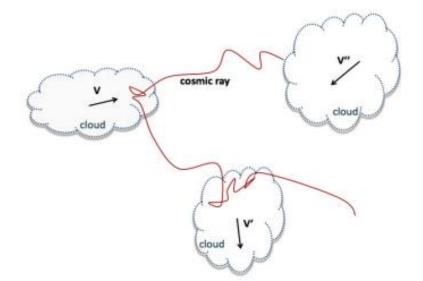
particles entering regions of higher magnetic field strength are reflected backwards

• charged particles follow cyclotron orbits gyro-radius: $r_{\rm g} = p_{\perp}/qB$

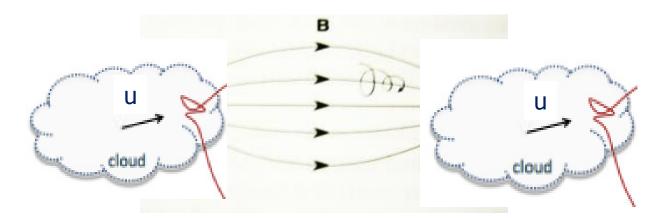
$$r_{\rm g} = \frac{p}{qB} = \frac{\gamma m}{ZeB} v_{\rm loc}$$


Rule

The magnetic flux $\Phi = B \cdot \pi r_g^2 \propto v_{\perp}^2 / B$ through the particles' cyclotron circle is constant.


stronger magnetic field

⇒ smaller gyro-radius, increased perpendicular velocity v_{\perp} ⇒ decrease of parallel velocity v_{\parallel} (energy conservation) ⇒ $v_{\parallel} \rightarrow 0$, then reflection $v = (v_{//}^2 + v_{\perp}^2)^{1/2}$


FERMI ACCELERATION

Fermi (1949): could CRs be produced via random scattering with magnetized interstellar clouds?

FERMI ACCELERATION

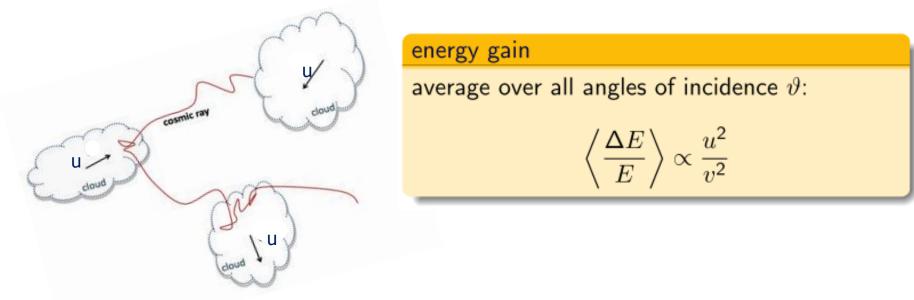
Frequency of head-on collisions > frequency of catch-up collisions

FERMI ACCELERATION

Head-on collision:

• change in kinetic energy: $\Delta E = \frac{1}{2}m(v+u)^2 - \frac{1}{2}mv^2$

Catch-up collision:


$$\Delta E_2 = \frac{1}{2}m(v-u)^2 - \frac{1}{2}mv^2$$

$$\frac{\Delta E}{E} = 2\frac{u^2}{v^2}$$

2nd Order Fermi

2nd ORDER FERMI ACCELERATION

There is net energy gain per collision:

u <<**v** ≈ **c**: the energy gain per collision is very small

Statistical reflection on many different clouds in a galaxy

Stochastic acceleration in magnetized turbulent medium

2nd ORDER FERMI ACCELERATION

✓ Particles accelerated in this statistical process satisfy diffusion-loss equation (Fokker-Planck):

$$\frac{dN}{dt} \approx -\frac{\partial}{\partial E} [N(E, t)\alpha E] - \frac{N(E, t)}{\tau}$$

$$\alpha = \text{Acceleration rate} \quad \alpha \equiv 4\nu (V/\nu)^2 \quad \begin{cases} v = 1/\Delta t \sim \nu/L \text{ (frequency collision)} \\ V = u \text{ (clouds mean velocity)} \end{cases}$$

 τ = time a cosmic ray stays in the galaxy

> Power Law spectrum:

$$\searrow N(E) \approx N_0 E^{-(1+1/\alpha\tau)}$$

2nd ORDER FERMI ACCELERATION

Result: **power law**

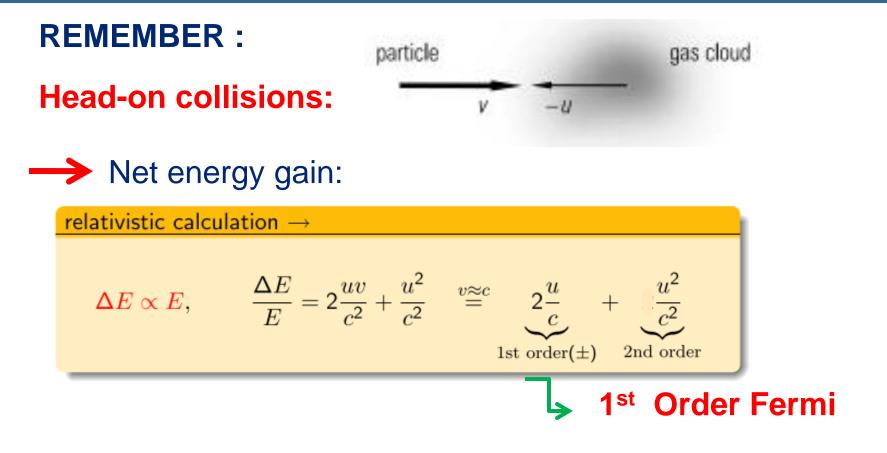
$$N(E) \propto E^{-\Gamma}, \quad \Gamma = \left(1 + \frac{1}{\alpha \tau}\right)$$

Nice, BUT:

$$lpha \sim < V^2 > /Lv = < V^2 > /Lc$$

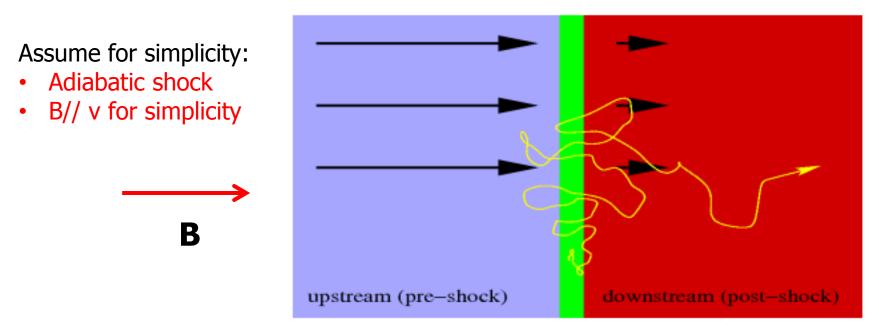
L = 100pc = mean separation between clouds (scatterers)

<V> = 10 km/s = clouds average velocity

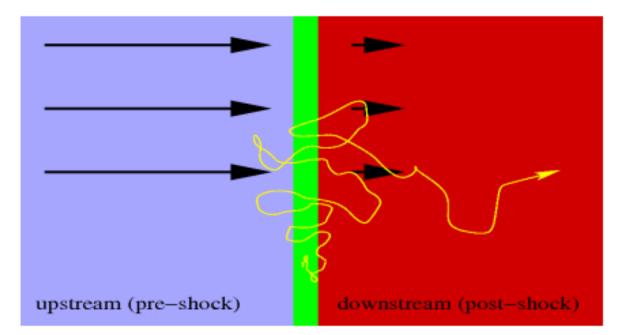

• $\tau = 2 \times 10^7$ and $\sigma = 10^7$ time CRs stay in the Galaxy

$$\frac{1}{\alpha \tau} = \frac{3 \times 10^{20} cm \times 3 \times 10^{10} cm/s}{10^{12} cm^2/s^2 \times 6 \times 10^{14} s} \simeq 1.5 \times 10^4 \quad \iiint$$

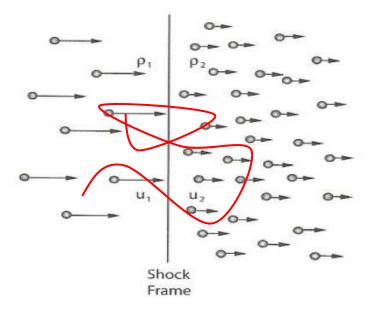
Thus: Γ calculated >> observed $\Gamma \sim 2.7 \parallel$



We need 1st ORDER FERMI ACCELERATION


Thus we need scattering in a CONVERGING FLOW: → acceleration in a SHOCK does this (Bell 1978) !!

picture in the rest frame of the shock front

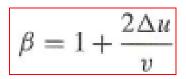


- Particles with higher velocity than the plasma flow may travel against the stream and cross the shock back to upstream (unshocked region)
- They scatter and interact with magnetic field fluctuations (Alfven waves)
- Shock contains converging scatterers because particles experience higher (head-on) collision velocities upstream than (catch-up) collisions downstream

picture in the rest frame of the shock front

- reflection in upstream \Rightarrow energy gain $\propto v_{\rm up}/c$
- reflection in downstream \Rightarrow smaller energy loss $\propto v_{\rm down}/c$
- repetition until particle is not scattered back upstream

Every round trip: particle executes one catch-up and one head-on


\rightarrow Average energy gain:

$$\frac{\langle \Delta E \rangle}{E} \approx \frac{2(u_1 - u_2)}{v} \equiv \frac{2\Delta u}{v}$$

→ Fermi I more efficient than Fermi II !! 29

Calculating the spectrum (Bell 1978):

 $\beta = E/E_o = 1 + \Delta E/E_o$: new energy/ collision, or:

P= probability that particle remains in the acceleration regime after one collision (probability that it returns to upstream to be accelerated again)

-> After k collisions, the number of particles still scattering N:

$$N = N_0 \mathcal{P}^k$$

Thus, eliminating k:

$$E = E_0 \beta^k$$

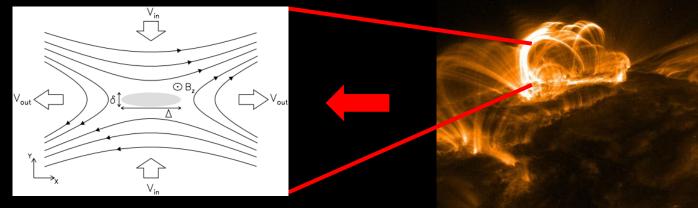
$$\frac{N}{N_0} = \left(\frac{E}{E_0}\right)^{\ln \mathcal{P}/\ln \beta} \rightarrow dN = K E^{\ln \mathcal{P}/\ln \beta - 1} dE$$

P= probability that particles remain in the acceleration region after one collision (that they return back to upstream from downstream):

- number of particles (with ~ c) crossing shock/area/time: $\frac{1}{4}Nc$

- steady state, the number of particles crossing back to upstream: $\frac{1}{4}Nc - u_2N$ $\Rightarrow \qquad \mathcal{P} = \frac{\frac{1}{4}Nc - u_2N}{\frac{1}{4}Nc} = 1 - \frac{4u_2}{c}$ Thus: $\ln \mathcal{P} = \ln\left(1 - \frac{4u_2}{c}\right) \approx -\frac{4u_2}{c}$ and $\ln \beta = \ln\left(1 + \frac{2\Delta u}{c}\right) \approx \frac{2\Delta u}{c}$ for STRONG adiabatic shock $\Rightarrow M >>1 \Rightarrow u_1/u_2 = 4$

CONTENTS


- Introduction
- Shock acceleration
 - Mirror Effect
 - 2nd Order Fermi Acceleration (turbulence)
 - Diffusive Shock Acceleration (1st Order Fermi)

Acceleration in Reconnection zones

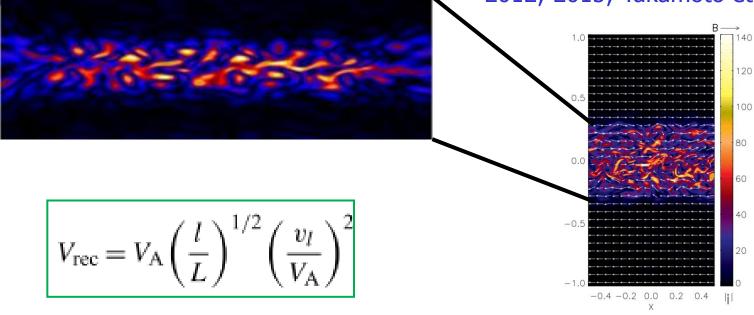
Astrophysical Sites

Reconnection & Particle Acceleration

Reconnection breaks the magnetic field topology -> releases magnetic energy into plasma in short time -> explains bursty emission

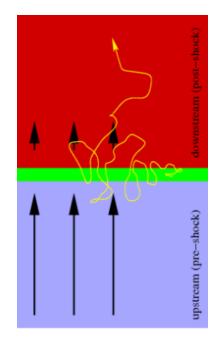
✓ Solar/stellar flares

Can reconnection lead to direct particle acceleration?


Fast Reconnection in MHD flows

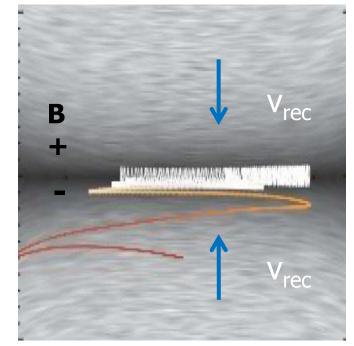
Turbulence drives FAST RECONNECTION

(Lazarian & Vishniac 1999; Eyink et al. 2011)


Magnetic lines wandering: many simultaneous reconnection events

Tested in 3D MHD numerical simulations (Kowal et al. 2009, 2012; 2015; Takamoto et al. 2015)

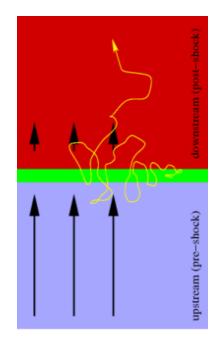
How particles can be accelerated in reconnection sites?


Shock Acceleration

1st-order Fermi (Bell 1978):

 $<\Delta E/E > ~ v_{sh}/c$

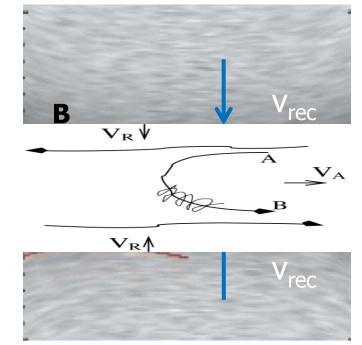
Reconnection Acceleration



As in shocks: 1st-order Fermi !! (de Gouveia Dal Pino & Lazarian, A&A 2005):

$$<\Delta E/E > ~ v_{rec}/c$$

How particles can be accelerated in reconnection sites?


Shock Acceleration

1st-order Fermi (Bell 1978)

 $<\Delta E/E > ~ v_{sh}/c$

Reconnection Acceleration

As in shocks: 1st-order Fermi (de Gouveia Dal Pino & Lazarian, A&A 2005):

$$<\Delta E/E > ~ v_{rec}/c$$

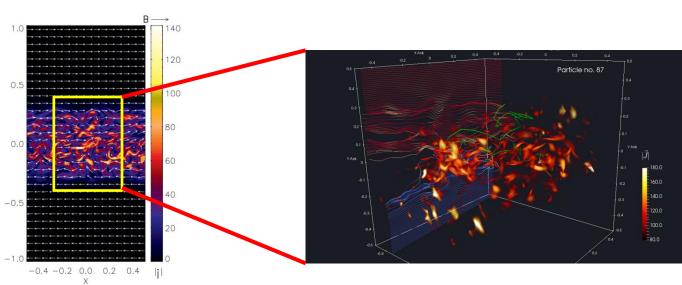
1st-order FERMI ACCELERATION @ RECONNECTION SITE

Similar derivation as in shock acceleration we obtain 1st-order Fermi (de Gouveia Dal Pino & Lazarian 2005):

 Particle Spectrum? (see also de Gouveia Dal Pino & Kowal 2015)

Testing Particle Acceleration by Reconnection using MHD Simulations with test particles

$$\begin{split} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= 0\\ \rho \left(\frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla \right) \mathbf{u} &= -c_s^2 \nabla \rho + (\nabla \times \mathbf{B}) \times \mathbf{B} - \rho \nabla \Psi + \mathbf{f}\\ \frac{\partial \mathbf{B}}{\partial t} &= \nabla \times (\mathbf{u} \times \mathbf{B}) + \eta_{\text{Ohm}} \nabla^2 \mathbf{B} \end{split}$$

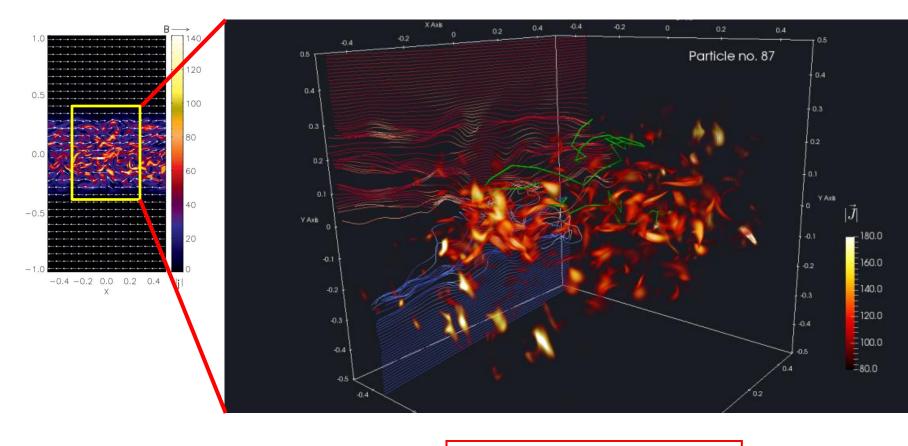

- 2nd order Godunov scheme with HLLD solver (Kowal et al. 2007, 2009)

- f: random force term responsible for injection of turbulence
- We perform numerical simulations of magnetic reconnection site simulated with MHD eqs. assuming isothermal plasma

(Kowal, de Gouveia Dal Pino, Lazarian ApJ 2011; PRL 2012)

Particle Acceleration by Reconnection using MHD Simulations with test particles

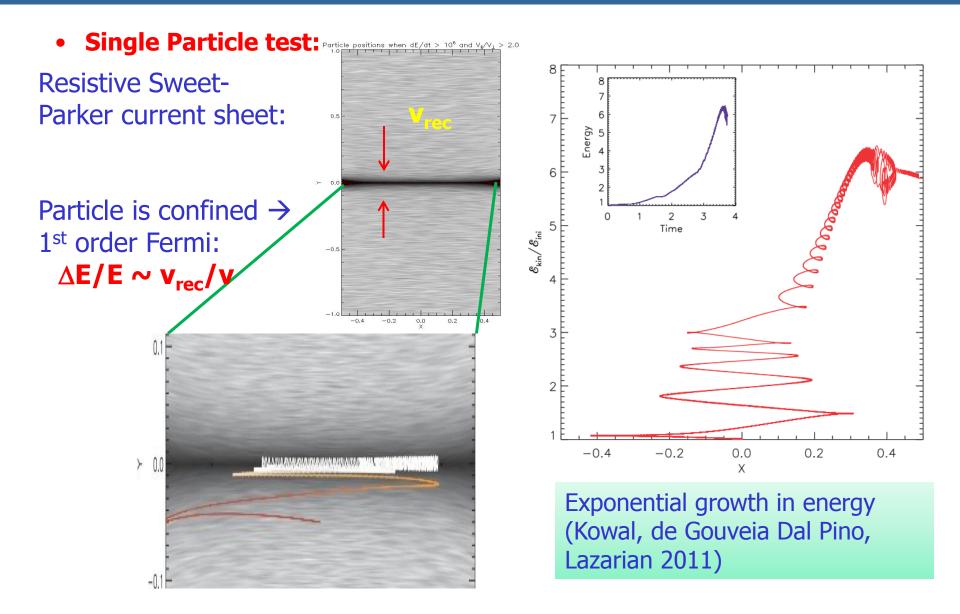
Current sheet with turbulence to make fast reconnection

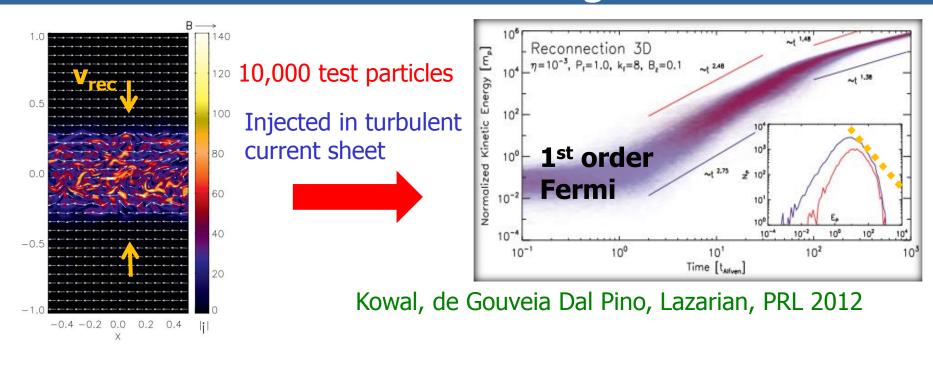


Inject test particles in the MHD domain of reconnection and follow their trajectories (6th order Runge-Kutta-Gauss):

$$\frac{d}{dt}(\gamma \, m \, \mathbf{u}) = q(\mathbf{E} + \mathbf{u} \times \mathbf{B}) \quad \longrightarrow \quad \frac{d}{dt}(\gamma \, m \, \boldsymbol{u}) = q\left[(\boldsymbol{u} - \boldsymbol{v}) \times \boldsymbol{B}\right]$$

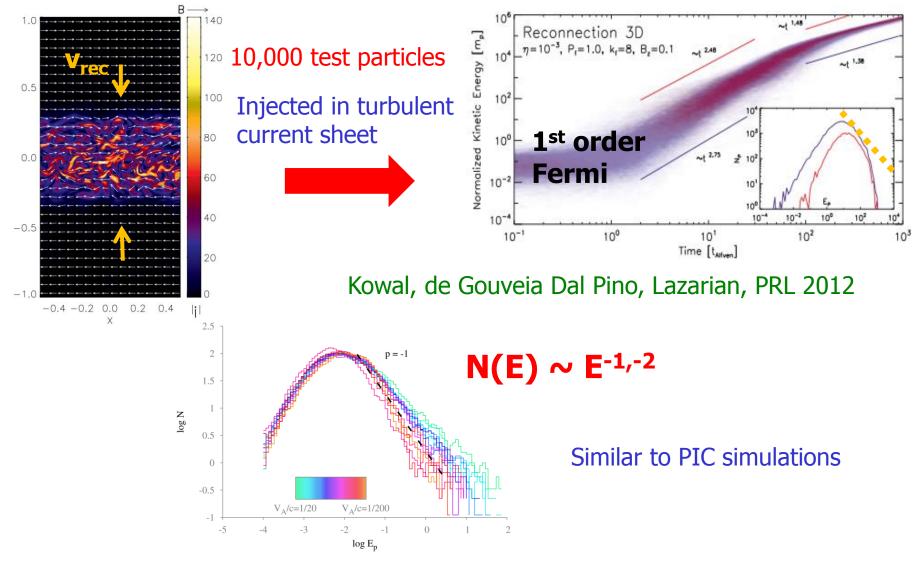
Kowal, de Gouveia Dal Pino, Lazarian ApJ 2011; PRL 2012


Particle Acceleration by Reconnection using MHD Simulations with test particles


$$\frac{d}{dt}(\gamma m \mathbf{u}) = q(\mathbf{E} + \mathbf{u} \times \mathbf{B}) \implies \frac{d}{dt}(\gamma m \mathbf{u}) = q[(\mathbf{u} - \mathbf{v}) \times \mathbf{B}]$$

Kowal, de Gouveia Dal Pino, Lazarian ApJ 2011; PRL 2012

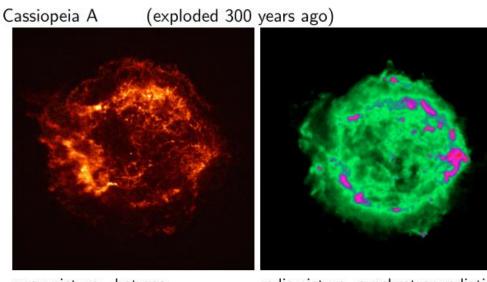
Test particle acceleration simulation in MHD Reconnection site



1st order Fermi Reconnection Acceleration: successful numerical testing in 3D MHD

del Valle, de Gouveia Dal Pino, Kowal MNRAS 2016

1st order Fermi Reconnection Acceleration: successful numerical testing in 3D MHD


del Valle, de Gouveia Dal Pino, Kowal MNRAS 2016

CONTENTS

- Introduction
- Shock acceleration
 - Changing Magnetic Fields
 - Mirror Effect
 - 2nd Order Fermi Acceleration (turbulence)
 - Diffusive Shock Acceleration (1st Order Fermi)
- Acceleration in Reconnection zones
- Astrophysical Sites

SHOCK ACCELERATION SITES

Supernova Remnants (SNRs):

x-ray picture - hot gas

radio picture - synchrotron radiation

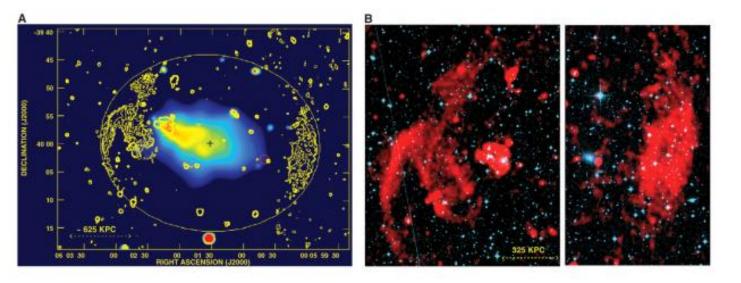
• Power to accelerate CRs in the Galaxy: galactic radius: R~15 kpc thickness: D~0.2 kpc CRs energy density: ρ_E =1 eV cm⁻³

 $P_{CR} = 2 \times 10^{41} \text{ J yr}^{-1}$

• SN II eject shell – shock front

 $M = 10 M_{sol}$ v=100 km/sSN rate = 10⁻² yr⁻¹

> Power output:

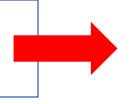

 $P_{SN} = 5 \times 10^{42} \text{ J yr}^{-1}$

SNRs more than sufficient to account for galactic CRs

SHOCK ACCELERATION SITES

Merging clusters of galaxies:

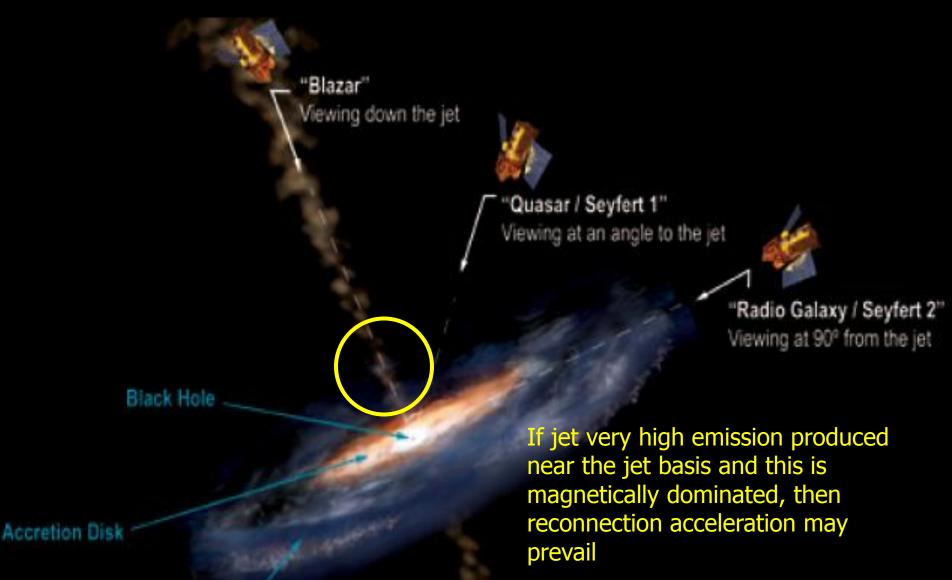
Galaxy cluster Abell 3376


Bagchi et al. 2006

- Mpc-scale supersonic radio-emitting shockwaves
- radio sources (synchrotron radiation..) may be acceleration sites boosting particles up to 10¹⁹ eV ???
- hints to subcluster merger activities

ACCELERATION SITES

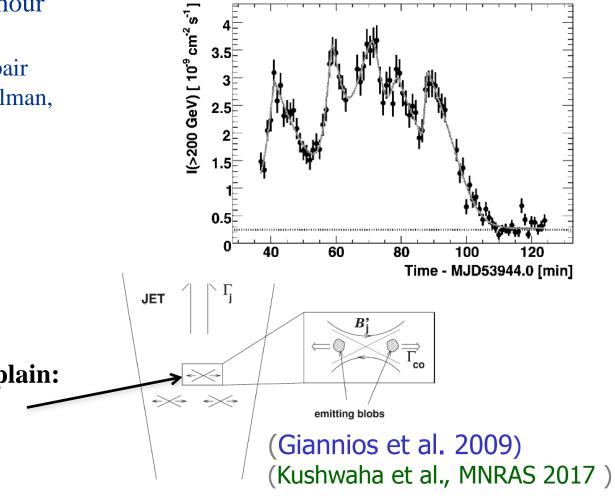
Astrophysical Jets:


Shock Acceleration: in internal shocks and terminal shocks (hot spots)

Synchrotron radiation evidences Particle acceleration in these shocks

Cygnus A

Acceleration by Magnetic Reconnection ? Reconnection Acceleration *can be important in magnetically dominated regions as* Relativistic Jets and surrounds of Black Holes

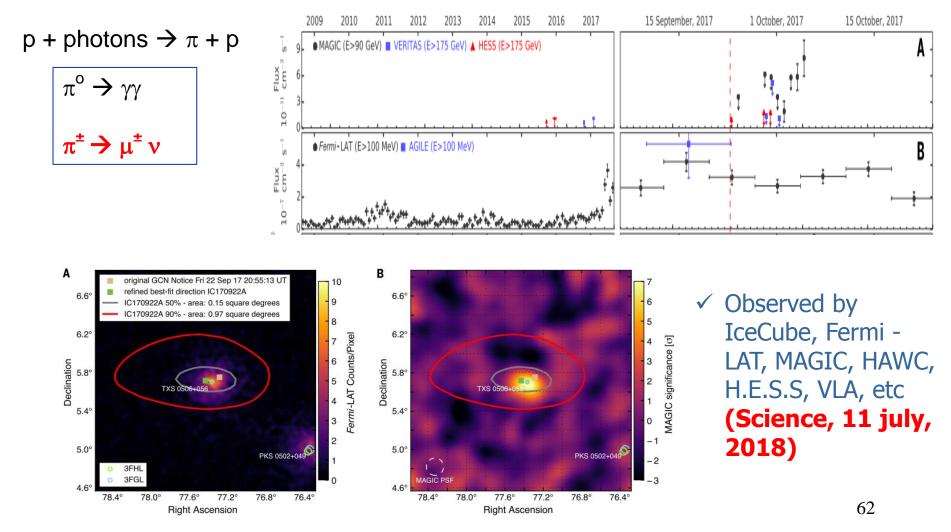

Very-rapid 10¹²eV Flares in *Blazar Jets* hard to explain with shock acceleration

Variation timescale:

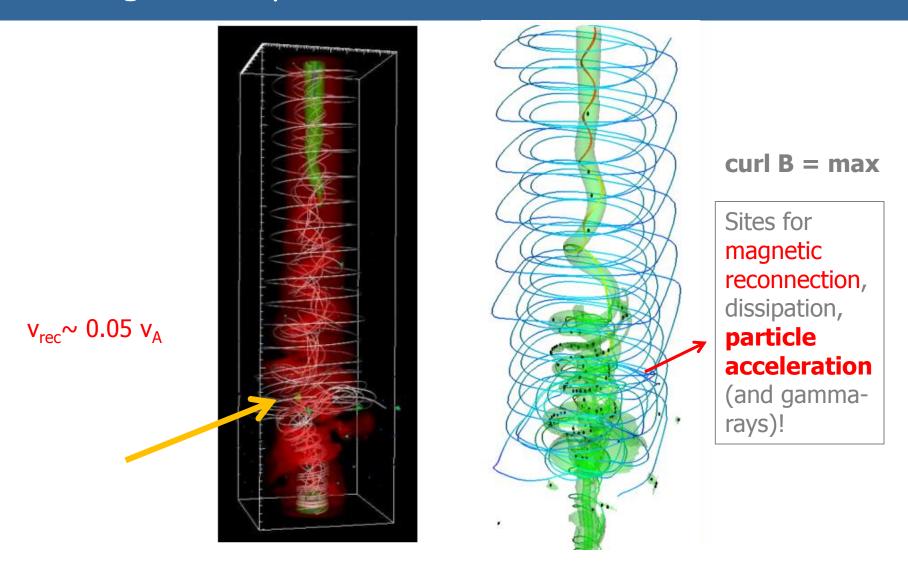
$t_v \sim 200 \text{ s} < r_s/c \sim 3M_9 \text{ hour}$

- TeV emission to avoid pair creation $\Gamma_{em} > 50$ (Begelman, Fabian & Rees 2008)
- bulk jet Γ~ 5-10
- Emitter: compact and/or extremely fast
- Only model that can explain: Reconnection
 acceleration

PKS2155-304 (Aharonian et al. 2007) See also Mrk501, PKS1222+21, PKS1830-211

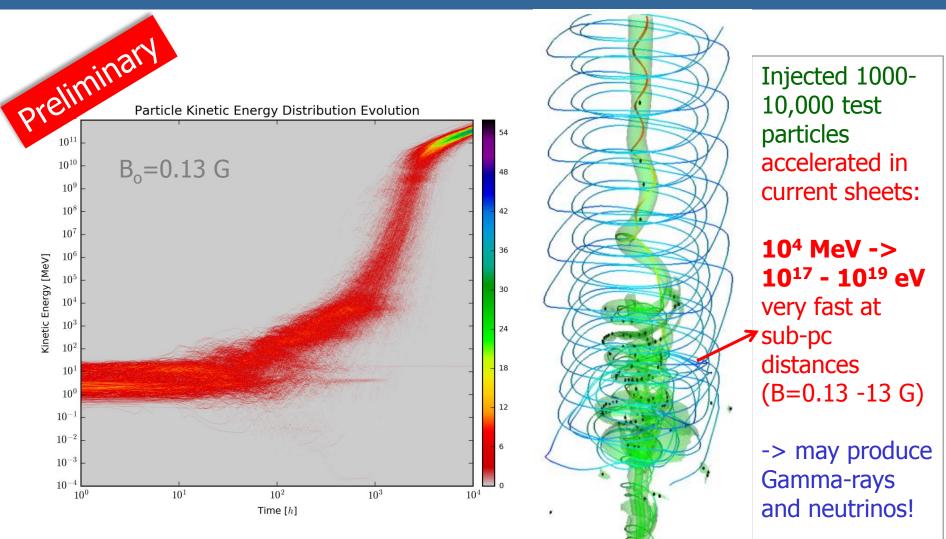


Press Release – SCIENCE TODAY!!


Multimessenger observations of a flaring blazar TXS 0506+056 coincident with high-energy neutrino IceCube-170922A for the first time !!

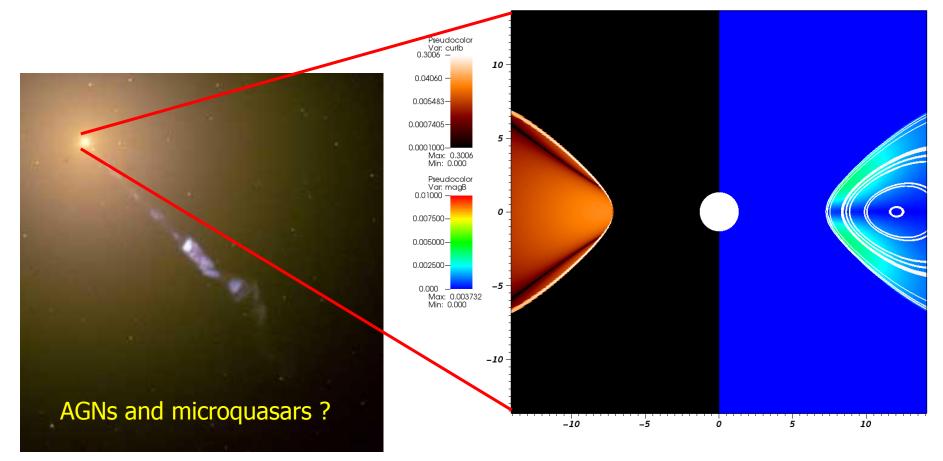
Gamma-ray and neutrino observation in blazar

✓ Neutrinos and gamma-rays are produced by high energy CRs :



MHD Simulations of Reconnection driven in Magnetically Dominated Relativistic Jets

Singh, Mizuno, de Gouveia Dal Pino, ApJ 2016


Test Particle simulations of Acceleration by Reconnection in Relativistic Jets

Medina-Torrejon, de Gouveia Dal Pino, Kowal, Mizuno, Kadowaki, Singh, in prep.

Evidence of Reconnection in general relativistic MHD Simulations of accretion disk/corona around BHs

Kadowaki, de Gouveia Dal Pino & Stone, 2018b (Athena++ code)

Sites of particle acceleration and non-thermal emission ??

REFERENCES

de Gouveia Dal Pino, E., Plasma Astrophysics http://www.astro.iag.usp.br/~dalpino/?q=teaching

Grupen, C., Astroparticle Physics, Springer 2005 Kaiser, H., Principles of Cosmic Ray Acceleration, Notes 2007 de Gouveia Dal Pino, E., Plasma Astrophysics Notes, 2005 Melia, F., High Energy Astrophysics Melrose, D. (2009), <u>arXiv:0902.1803v1</u> [astro-ph.SR] Fermi, E. On the Origin of Cosmic Radiation, Phys. Rev. Vol. 75, 8 (1949) 1169 Perkins, D., Particle Astrophysics, 2006 de Gouveia Dal Pino, E. & Kowal, G. 2013 de Gouveia Dal Pino, E. et al. 2016

...and references inside the presentation...