

A very basic Introduction to MPI
parallelization

Juan Carlos Muñoz Cuartas
Instituto de Física

Universidad de Antioquia

ISYA 41
Socorro

2018

Lets assume you have done all the algorithmic
and code optimizations common sense indicates,
but still your problem is too large, or is to slow…

● How do you solve an extensive problem in
computers with limited amount of memory?

● How do we solve an intensive problem in a
reasonable amount of time?

Divide the work...! Parallel computing!

There are different ways to do
parallel computing

● OpenMP
● NVIDIA-CUDA parallelization
● Vectorization for especial purpose hardware
● Message passing (MPI)

What will we do?

✔ Because of portability
✔ Because of time constraints
✔ Because if you get this strategy, you are ready to go on

your own with any other methods...
✔ Because of the standard

...

We will keep our attention on learning MPI parallelization

Architecture: Shared memory

Architecture: Distributed memory

How do we decompose the
problem?

The disadvantage of programming for parallel
architectures with MPI is that the developer is the one
that has to design the program structure and
parallelization strategies :

Now, you not only have to think on the computational
issues of your scientific problem, you now have to deal
with the problem of making all machines work together.

Domain Decomposition

Functional Decomposition

Domain decomposition

One way to parallelize a problem is based on the
idea that you can take the data of your problem
and let different instances work on that data

Functional decomposition

Functional decomposition is associated to the
decomposition of the program in a set of jobs to be
executed by every MPI instance.

This is more easily used when the different
instructions are independent, or when the
instructions can be executed in different datasets
simultaneously.

Basic things to be considered

✔ Try to keep the load balance

Work has to be balanced across processes

Data has to be balanced across processes

✔ Minimize communication

If moving data from local memory to CPU is time consuming, what
do you think about moving data from another CU far away?

✔ Maximize the simultaneous execution of CPU execution and
communication.

Minimizes “lazy” time in the CPU (IDLE). Very difficult to achieve in
practice

MPI Message Passing Interface

✔ Message passing is a model of parallel computing where
libraries are used to setup communication across a set of
CPU units working together in a job.

✔ MPI is a standard defining protocols for the
implementation of message passing for parallel
computing

✔ There are several implementations of MPI

(LANL, MVAPICH, INTEL, CRAY, ….) all of them follow the
same standard.

✔ MPI is not a language, in the end, it is just a library you
use on top of your code to implement communication.

Interesting MPI4Python
Not in the standard, but still there for use

Language bindings for MPI 3.0 standard are:
C
FORTRAN

Other bindings may be found in the maket, but not being part of the
standard you may not find them available in HPC facilities

How do the MPI thing works?

Lets go through by examples!

Load the library

New variables for
parallelization

Finalize the environment

Just for parallelization
initialization environment

What is this MPI_COMM_WORLD?

Fortran version

The structure is pretty much the same!

✔ There are as many independent copies of the code running as
MPI instances

Same code is running in all process!

✔ The number of MPI instances can be > than number of available
CPUs

Performance?

✔ Is the data the same in all processes?

NO! (see example 1)

✔ No shared memory at all!

Even if are actually in a shared memory architecture

That’s why you need the communication!!

What is this MPI_COMM_WOLD?
Communication groups

MPI_COMM_WORLD

MPI_COMM_G1

MPI_COMM_G2

MPI_COMM_G3

MPI_COMM_G4

MPI_COMM_G5

MPI_COMM_G6

MPI_COMM_G7

✔ New variables, new lines for code execution are included

MPI parallelization costs: creation of new variables,
execution of more lines of code, development!

✔ By default synchrony is not expected

(run example 0 several times)

✔ You have to make sure the code runs with the synchrony
you like!

See example 2

✔ Synchronization issues: one of the challenges during the
implementation of MPI parallelization.

Sync implies waiting…. Reduced efficiency!

Collective communications

Collective communications are associated with the
data transfer that involves the full group of processes
in a communication group.

✔ Broadcasting: Sends messages to all processes in a group

✔ Gather: Gathers data from all processes in the group

✔ Scatter: Scatter data across all processes in the group

✔ Reduce: Collects and reduce local data to a “global variable” in
the group.

Broadcasting: Sends messages to all processes in a group

Data to be broadcasted

Number of data elements

Data type (bits!)

Who is “screaming” the data

Group

C basic MPI data types

FORTRAN basic
MPI data types

Scatter: Scatter data across all processes in the group

Data to be sent

of data elements to send

Receive buffer

of data elements you get

Who was sending the data

Gather: Gathers (collects) data from all processes in a group

Data to be collected

of data elements

Receive buffer
of collected data elements

Who is collecting the data?

Reduce: Collects and reduce local data to a “global variable”
in the group.

Data to be reduced

Result of the reduction

of elements to reduce

Reduction operation

MPI_Reduce Operations

Point to Point communication
Point to point communication in MPI is the way we use to
make processes in a job talk to each other privately.

In point communications only two processes are involved.

We will consider first the basic (ans more often used)
instructions for point communication

MPI_Send: Sends data to other process in a given
communication group

MPI_Recv: Receives a message sent by other process in the
communication group

MPI_Send: Sends data to other process in a given
communication group

What do you need to send a document?
1) The document fully documented
2) Full address of the receiver
3) A sentence of “subject” to indicate the
content of the message

Data to be sent

of data elements

Data type

ID of receiving task (COMM...)

“Subject” tag

MPI_Recv: Receives a message sent by other process in
the communication group

What do you need to receive a document?
1) A mail box with predefined size
2) Do you accept a box from anyone? Sender ID
3) A sentence of “subject” to indicate the
content of the message

Memory space to receive the data

of data elements

Data type

ID of sender (COMM...)

“Subject” tag
Status flag. Received?

Very simple modification, a more fluent talk!

There are always dysfunctional couples…!

If not taken into account, this may
have severe consequences!

Lets make two processes to talk fluently...

How do we do to make two processes to play ping-pong?

● Things to be considered

1) There are two players

● Communication:

task 0 sends to 1. Receives from 1. Just 1 buddy

Task 1 sends to 0. Receives from 0. Just one buddy

● Every player sends every second move

● Every player receives every second move

0 for task 1

1 for task 0

Every second move there is a
change of roles

Now, lets see how do we move data in a ring
(topology)

Now, we have a problem that
implies the communication of
data in a way that it passes
through all processes involved in
computation.

A ring communication ring

● There are N processes (arbitrary number… as has to be for
portability and scalability!)

● Process i receives from process i-1

● Process i sends to process i+1

● Be aware about the “boundaries” of the ring. Processes 0 and
N-1

(0+1) % 4 = 1
(1+1) % 4 = 2
(2+1) % 4 = 3
(3+1) % 4 = 0

The boundary effect

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

