A very basic Introduction to MPI
parallelization

ISYA 41
Socorro
2018

Juan Carlos Munoz Cuartas
Instituto de Fisica
Universidad de Antioguia

Lets assume you have done all the algorithmic
and code optimizations common sense indicates,
but still your problem is too large, or is to slow...

 How do you solve an extensive problem in
computers with limited amount of memory?

 How do we solve an intensive problem in a
reasonable amount of time?

Divide the work...! Parallel computing!

There are different ways to do
parallel computing

OpenMP

NVIDIA-CUDA parallelization

Vectorization for especial purpose hardware
Message passing (MPI)

What will we do?

v Because of portability
v Because of time constraints

v Because If you get this strategy, you are ready to go on
your own with any other methods...

v Because of the standard

We will keep our attention on learning MPI parallelization

Architecture: Shared memory

Centralized Shared Memory
Multiprocessor

Caches Caches Caches Caches
i

[Interconnection MNetwork

[Main Memory] [I/0 System]
EI-'F..-_:ii.-EI-'FEEEE

Architecture: Distributed memory

Distributed Memory Machine

Architecture
Caches Caches Caches
IMemnr'-}f I1/0 |Mernar*f I I/0 |Memm'}f 1/0
[Interconnection Metwaork]

TR | e
CLRHR B
LI
al

=R]
¢ gt mE gt B1 #= EBE

g e = 0

R A

How do we decompose the
problem?

The disadvantage of programming for parallel
architectures with MPI is that the developer is the one
that has to design the program structure and
parallelization strategies :

Now, you not only have to think on the computational
Issues of your scientific problem, you now have to deal
with the problem of making all machines work together.

Domain Decomposition
Functional Decomposition

Domain decomposition

One way to parallelize a problem is based on the

iIdea that you can take the data of your problem
and let different instances work on that data

. EEEEEEEEEEEN
w NEFEENEEENEENE

Functional decomposition

Functional decomposition is associated to the
decomposition of the program in a set of jobs to be
executed by every MPI instance.

This Is more easily used when the different
Instructions are independent, or when the
Instructions can be executed In different datasets

simultaneously:.

Problem Instruction Set

Basic things to be considered

v Try to keep the load balance
Work has to be balanced across processes
Data has to be balanced across processes

v Minimize communication

If moving data from local memory to CPU is time consuming, what
do you think about moving data from another CU far away?

v Maximize the simultaneous execution of CPU execution and
communication.

Minimizes “lazy” time in the CPU (IDLE). Very difficult to achieve in
practice

MPI| Message Passing Interface

v Message passing Is a model of parallel computing where
libraries are used to setup communication across a set of
CPU units working together in a job.

v MPI Is a standard defining protocols for the
Implementation of message passing for parallel
computing

v There are several implementations of MPI

(LANL, MVAPICH, INTEL, CRAY,) all of them follow the
same standard.

v~ MPI is not a language, in the end, it is just a library you
use on top of your code to implement communication.

Language bindings for MPI 3.0 standard are:
C

FORTRAN
Other bindings may be found in the maket, but not being part of the
standard you may not find them available in HPC facilities

Interesting MPI4Python
Not in the standard, but still there for use

MPI for Python 3.0.0 documentation »

Table Of Contents MPI for Python

next | modules | index

MPI for Python . .
Contents Author: Lisandro Dalcin
. Contact: dalcinl@gmail.com

Next topic Web Site: https://bitbucket.org/mpid4py/mpidpy

Introduction Date: Nov 08, 2017
This Page

g Abstract
Show Source
. This document describes the MP! for Python package. MPI for Python provides bindings of the Message Passing Interface (MPI)
Quick search . ; . .
standard for the Python programming language, allowing any Python program to exploit multiple processors.

H This package is constructed on top of the MPI-1/2/3 specifications and provides an object oriented interface which resembles the

MPI-2 C++ bindings. It supports point-to-point (sends, receives) and collective (broadcasts, scatters, gathers) communications of any

picklable Python object, as well as optimized communications of Python object exposing the single-segment buffer interface (NumPy
arrays, builtin bytes/string/array objects)

How do the MPI thing works?
Lets go through by examples!

#include <stdio.h>
#1nclude\<mp1 h} Load the library

int maln(lnt arge, charxx argv) { New variables for

int rank size; parallelization
/MPi;Init(&argc, &argv) ; T

A
MPI Comm size (MPI COMM WORLD, &size{}
\\MEI_Comm_rank(MPI_COMM_WORLD, &rquk);

printf ("Hello World, I am %d of %d\n", rank, size);

<;11MPI Flnallze() ; Finalize the environment
return 0:

#include <stdio.h>
#include <mpi.h>

int main(int argc, charxx argv) {
int rank, size;

Just for parallelization
Initialization environment

//MPi_Init(&argc, &argv) ; n**\\
MPI_ Comm size (MPI_COMM WORLD, &size);
\\MQI_Comm_rank(MPI_COMM_WORLD. &rauk¥}

printf ("Hello World, I am %d of %d\n", rank, size);

MPI Finalize();
return 0;

What is this MPI_COMM_WORLD?

Fortran version

program mpiltest
use MPI
integer :: rank, size, ilerror

call MPI Init(ierror)
call MPI Comm size (MPI_COMM WORLD, size, 1lerror)
call MPI_Comm_rank (MPI_COMM WORLD, rank, ilerror)

write(*,*) ’'Hello World, I am ’',rank,’ of ',size

call MPI Finalize(ierror)
end

The structure is pretty much the same!

There are as many independent copies of the code running as
MPI instances

Same code is running in all process!

The number of MPI instances can be > than number of available
CPUs

Performance?

|s the data the same in all processes?
NQO! (see example 1)

No shared memory at all!
Even If are actually in a shared memory architecture
That’s why you need the communication!!

What is this MPI_COMM_WOLD?
Communication groups

MPI_COMM_G5

MPI_COMM_G3

MPI_COMM_G4

MPI_COMM_G6

v New variables, new lines for code execution are included

MPI parallelization costs: creation of new variables,
execution of more lines of code, development!

v By default synchrony is not expected
(run example 0 several times)

v You have to make sure the code runs with the synchrony
you like!

See example 2

v Synchronization issues: one of the challenges during the
Implementation of MPI parallelization.

Sync implies waiting.... Reduced efficiency!

Collective communications

Collective communications are associated with the
data transfer that involves the full group of processes
IN a communication group.

AN

Broadcasting: Sends messages to all processes in a group
Gather: Gathers data from all processes in the group

<

<

Scatter: Scatter data across all processes in the group

v Reduce: Collects and reduce local data to a “global variable” in
the group.

Broadcasting: Sends messages to all processes in a group
OL
©= O= O= O

Data to be broadcasted

VPl Bcast

MPI Bcast

Broadcasts a message from the process with rank "root” other processes
of the communicator

int MPI Beast(Number of data elements
vold *buffer,
int count,

MPI Datatype datatype,/ Data type (bitS!)

int root, \ L .
MPI_Comm comm Who is “screaming” the data

);
Group

MPI type C type
MPI_CHAR signed char
MPI_TINT signed int
MPI_LONG signed long
MPI FLOAT float
MEPI_DOUELE | double
MPI_EBYTE N/A

C basic MPI data types

MPI type Fortran type
MPI_CHAR CHARACTER (1)
MFI_TNTEGER INTEGER
FORTRAN basic . — o84 EAL
MPI data. types MFI_DOUELE PRECISION | DOUBLE PRECISION
MFPI_COMPLEX COMF LEX
MPI_LOGICAL LOGICAL
MFI_EBYTE N/A

#include <stdio.h=
#include <stdlib.h>
#include <mpi.h=>

int main (int argc, char *argv[])

{

int err;
int Number of Processes, task, 1i;

err = MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &Number of Processes);
MPI_Comm_rank(MPI_COMM_WORLD, &task);

i=0;
if(task == @)
{ -
1=10000;
ks

printf(" => Hola! before bcast I'm task %d of %d i=%d\n", task, Number of Processes,i);
MPI _Barrier(MPI_COMM_WORLD);

MPI Bcast(&i, 1, MPI_INT, ©, MPI_COMM_WORLD);
printf("Hola! after bcast I'm task %d of[Jsd i=%d\n", task, Number_of Processes,i);
err = MPI_Finalize();

return ©;

Scatter: Scatter data across all processes in the group

MPl_ Scatter

ore
©= O O O

MPI Scatter

Sends data from one process to all other processes in a communicator Data to be sent
int MPI Scatter{ >
* # of data elements to send

)i

void *sendbufiﬂﬂﬂ—#ﬂﬂﬂﬂﬂ-~##-~ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ----f”'

int sendcnt,

MPI Datatype sendtype,

i e th > Receive buffer

int recvcent,
MPI_Datatype rec;E;5ET‘\\""‘“"‘~‘~\\‘N“\\\\\‘\“\\MN\.>
int root, # of data elements you get
MPI_Comm _
Who was sending the data

Gather: Gathers (collects) data from all processes in a group

WPl Gather

©= O= O O
o™

MPI Gather

Gathers together values from a group of processes Data. tO be CO”eCted
int MPI_Gather(

void *sendbuf, # of data elements

int sendcnt,
MPI Datatype sendtype,

veid *recvbuf, ——7——— 0000000 Receive buffer

int recvcnt,

oS # of collected data elements

MPI Comm comm] .
); Who is collecting the data?

k=0;
for(i=task*8; i<(task*8 + 8); i++)
{

local numbers[k] = 1i;
k++:

}

MPI_Barrier(MPI_COMM_WORLD);

for(i=0; i<Number of Processes; i++)

{

if(i == task)
{
for(k=0; k<8; k++)
printf("task %d input %d\n",task, local numbers[k]);

}

MPI_Barrier(MPI_COMM_WORLD):
}

MPI_Gather(&local numbers[®], 8, MPI_INT, &global numbers[©], 8, MPI_INT, ©, MPI_COMM_WORLD);

if(task == 0)
{
for(i=0; i<32; i++)
printf("Now in task @ we have %d\n",global _numbers[i]);

Reduce: Collects and reduce local data to a “global variable”
In the group.

Ol @2\ ®; Ok

MPI_SUM

N/

@‘IB

MPI Reduce Data to be reduced

Reduces values on all processes to a single value

int MPI_ Reduce(
vold *sendbuf,

Result of the reduction
vold *recvbuf,

int count, »1# of elements to reduce

MPI Datatype datatype,
MPI Op op,

int root, h"‘*khh"""‘*‘*"“--———R‘%‘_‘_R_hk_“.> : :
Reduction operation

MPI Comm comm

MPI| _Reduce Operations

MPI MAX Maximum

MPI_MIN Minimum

MPI_PROD Product

MPI_SUM Sum

MPI_LAND Logical and

MPI_LOR Logical or

MPI_LXOR Logical exclusive or
MPI_BAND Bitwise and

MPI BOR Bitwise or

MPI_BXOR Bitwise exclusive or
MPI_MAXLOC Maximum value and location
MPI MINLOC Minimum value and location

k=0;
for(i=task*8; i<(task*8 + B8); i++)
{
local numbers[k] = 1i;
k++:

3
MPI_Barrier(MPI_COMM_WORLD);

for(i=0; i<Number of Processes; i++)

{

if(i == task)
{
for(k=0; k<8; k++)
printf("task %d input %d\n",task, local numbers[k]):

3

MPI Barrier(MPI_COMM WORLD);
3

for(i=0; i<8; i++)
results[i] = 0;

MPI_Reduce(&local numbers[®], &results[©], 8, MPI_INT, MPI_SUM, ®, MPI_COMM_WORLD);

if(task == @)
{
for(i=0; i<8; i++)
printf("%d\n",results[i]);

Point to Point communication

Point to point communication in MPI is the way we use to
make processes in a job talk to each other privately.

In point communications only two processes are involved.

We will consider first the basic (ans more often used)
Instructions for point communication

MPI_Send: Sends data to other process in a given
communication group

MPI_Recv: Receives a message sent by other process in the
communication group

MPI_Send: Sends data to other process in a given
communication group

Sender Receiver

MPL Ini MP! Init What do you need to send a document?

MPIIS y 1) The document fully documented

— " 2) Full address of the receiver

3) A sentence of “subject” to indicate the
content of the message
= MPI Recy

MPI Fnalize MPI Finalize

MPI Send Data to be sent
Perfo blocki d
o '"gsen/v# of data elements
int MPI_Send(
void *buf,

int count, wDﬂta type
MPI Datatype datatype,

ing gt ——»|D of receiving task (COMM...)

MPI Comm comm

); “8%&&” tag

MPI_Recv: Receives a message sent by other process Iin
the communication group

Sender

Receiver

MPI Init MPI Init
MPI_Send
3| MPI Recy
MPI Finalize MPI Finalize
MPI Recv

What do you need to receive a document?

1) A mail box with predefined size

2) Do you accept a box from anyone? Sender ID
3) A sentence of “subject” to indicate the
content of the message

Memory space to receive the data

Blocking receive for a message # Of data. e|ement8
int MPI_Recv(

void *buf,

int count,

MPI Datatype datatype,

 > Data type

int source,

int tag,
MPI Comm cuﬁ;T‘%"%"h_‘h"%"%_‘%“*“*“*“*“~“~‘——b»

» |ID of sender (COMM...)
“Subject” tag

MPI Status *status
); :
Status flag. Received?

finclude <stdio.h=
#include <stdlib.h=
#include <mpi.h=>

int main (int argc, char *argv[])

{
int err, number=0;
int Number of Processes, task, 1i;
MPI S5tatus status;

err = MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM _WORLD, &MNumber of Processes);
MPI_Comm_rank(MPI_COMM_WORLD, &task);

if(task == @)
{
number = -1;
printf("Process ® sends number %d to process 1\n",number);
MPI_Send(&number, 1, MPI INT, 1, ®, MPI COMM WORLD);
1
else if (task == 1)
{
MPI_Recv(&number, 1, MPI INT, ©, ©®, MPI COMM WORLD, &status);
printf("Process 1 received number %d from process @\n", number);

}

err = MPI_Finalize();

Very simple modification, a more fluent talk!

MPI Comm size(MPI COMM WORLD, &Number of Processes);
MPI_Comm_rank(MPI_COMM _WORLD, &task);

if(task == 8)
{
number = -1;
printf("Process @ sends number %d to process 1\n",number); fflush(stdout);
MPI_Send(&number, 1, MPI_INT, 1, ©®, MPI_COMM_WORLD);

MPI Recv(&number, 1, MPI INT, 1, ©, MPI COMM WORLD, &status);
printf("Process ® received number %d from process 1. That's all!j|n", number); fflush(stdout);

}
else if (task == 1)
{
MPI Recv(&number, 1, MPI INT, @, ©®, MPI COMM WORLD, &status);
printf("Process 1 received number %d from process @\n", number); fflush(stdout);

number=-1000;
MPI_Send(&number, 1, MPI_INT, @, ©, MPI_COMM_WORLD);

#include <stdio.h> There are always dysfunctional couples...
#include <stdlib.h> . .

#include <mpi.h>

int main (int argc, char *argv[])

{

int err, number=0;
int Number of Processes, task, 1i;
MPI_5tatus status;

err = MPI Init(&argc, &argv):

MPI_Comm_size(MPI_COMM_WORLD, &MNumber of Processes);
MPI_Comm rank(MPI_COMM_WORLD, &task);

if(task == 0)
{
number = -1;
printf("Process @ sends number %d to process 1\n",number);
MPI_Send(&number, 1, MPI INT, 1, ®, MPI_COMM WORLD);
ks
else if (task == 1)
{
ffEPI_Recv{&number, 1, MPI_INT, @, @, MPI_COMM WORLD, &status);
printf("Process 1 received number %d from process @\n", number);

}

err = MPI_Finalize(); If not taken into account, this may

have severe consequences!

Lets make two processes to talk fluently...

How do we do to make two processes to play ping-pong?

* Things to be considered

1) There are two players

« Communication:
task O sends to 1. Receives from 1. Just 1 buddy

Task 1 sends to 0. Receives from 0. Just one buddy

« Every player sends every second move

* Every player receives every second move

err = MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &Number of Processes);
MPI_Comm_rank(MPI_COMM_WORLD, &task);

partner_task = (task + 1) % 2; > 0 fortask 1

ping_pong_count = 6; - » 1fortask 0

while(ping_pong_count < PING_PONG_LIMIT)

{ . Every second move there is a
-~ change of roles

if(task == (ping_pong_count % 2)}//////////,,
{

// Increment the ping pong count before you send it
ping_pong_count++;
MPI_Send(&ping pong count, 1, MPI_INT, partner_task, ®, MPI_COMM WORLD);

printf("%d sent and incremented ping pong count " "%d to %d\n",
task, ping pong count, partner task);

MPI_Recv(&ping pong count, 1, MPI_INT, partner_task, @, MPI_COMM WORLD, &status);
printf("%d received ping_pong count %d from %d\n",
task, ping pong count, partner_task);

Now, lets see how do we move data in a ring
(topology)

Now, we have a problem that
Implies the communication of
data in a way that it passes
through all processes involved in
computation.

A ring communication ring

There are N processes (arbitrary number... as has to be for
portability and scalability!)

Process | receives from process /-1

Process i/ sends to process /+1

Be aware about the “boundaries” of the ring. Processes 0 and
N-1

O0+1) % 4=1

towhom = (task+1) % Humher_nf_Prncesses;/*// (1+1) % 4 =2

fromwhom = task-1; (2+1) % 4 = 3

(3+1) % 4 =0

if(task == @)
fromwhom = Number_of_Processes-1;[]

Lf(task 1= 0)

{
MPI_Recv(&value, 1, MPI_ INT, task-1, ©, MPI_COMM WORLD, &status);
printf("Process %d received dummy %d from process %d\n",
task, value, task - 1);
ks
else
{
/] Set the dummy's wvalue if you are process 0
value = -1;
ks

MPI_ Send(&value, 1, MPI INT, towhom, ®, MPI COMM_WORLD);

/] Now process O can receive from the last process.
if(task == 0)
{
MPI_Recv(&value, 1, MPI_INT, fromwhom, ©, MPI_ COMM WORLD, &status);
printf("Process %d received dummy %d from process %d\n",
task, value, Number of Processes-1);

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

