

A very basic Introduction to HPC
Trying to get the most out of the computer

Juan Carlos Muñoz Cuartas
Instituto de Física

Universidad de Antioquia

ISYA 41
Socorro

2018

Growth of the field in Astronomy has
been parallel to the growth of computing

power

As computer power grows, our “astronomy
knowledge” does the same way

(One might think is the other way around!)

This has changed the reality of astronomy in a
very deep way!

?

What your mama’ HOPES
you are doing

What you are really
doing!!

STSCI 2014

Toomre & Toomre 1972

Illustris TNG project

But, why do we need computers in
astronomy

If I still have to convince you that we need
computers to do our work in astronomy... here a
few scenarios where we really need them to do
our job...

Data Acquisition

Did you know that CCD chips were created (at
first!) as as computer memory devices?

Data acquisition is controlled by a computer: CCD
detector is a silicon-semiconductors. Understanding
how this computer works is needed to ensure you
understand the data you are acquiring!

For example: read out noise is introduced by reading
the CCD too fast!

Data management

Once you have your data, you realize you have
loooooots of data, more than you can handle…

Organizing this data is a “must” if we pretend to
make any kind of “smart” use of all this data.

What will we do with the data from LSST?
Several Tb per night?

Think on a pile 3.5m tall of hard drives just with
a copy of SDSS data

Next you would like to analyze your
data.

Assume you already solved the issue of swimming in Tb of
data in you database.

You already have a plan on how to manage your data!

You would like to clean up your data from all kind of “noise”.

Will see it with Karín in the next days and you know you
don’t do it by hand!

Other thing you may like to do is to take your data and see
if it fits a model

This is what an actual
CMB map “looks like”

This is what the data shows
associated to the dipole
contribution

This is what the processing
shows once you remove the
dipole contribution

Science is driven by data… but you
want to get your “theory”

Assume you want to see if the model you used to fit the CMB data actually
reproduces all the observables you have. Then you have your model and you
want to “predict” things with your model.

This is actually an issue for many realistic models, you simply can not
do the math…!

Solve the Fluid equations? Can you?
Solve the MHD equations? In general cases?
Solve the equations of motion for a set of self-
gravitating particles

Is in these cases where
you need Hardcore
solution to the problems

One example: Solve Poisson’s equation
(for the problem you like...!)

Fourier magic!

1) Build a regular grid and use it to build a density field from the particle distribution.
For that, use a CIC or NGP scheme.

2) Apply a Fourier transform to the density field and Solve Poisson equation in Fourier space
for the gravitational potential

3) Then transform back the potential from Fourier space and use it to compute its derivatives
in the grid

4) Use the grid to interpolate back the force field at the position of every particle.

3N Ng2*Ng 2*Ng 3N+5Ng
(8Gb)

What are we going to do?

● We focus our attention on our problem: SCIENCE
● Programming is just a tool we use to get our

science done
● The language is another tool, don’t get in love

with just one language: There are different tools
for different problems

Architecture of the computer

The best way to know how to improve
the operation of any tool, is knowing how
it works!

This is our working hypothesis!

Based in this premise, we will talk a little
bit about very basic (dummy!) aspects of
the workings of “a computer”.

Sorry if this is too basic for you, feel free
to fall to sleep for a few minutes if it is
the case!

This will be our concept
of computer

Altix

JuGene

JUROPA

Marenostrum

My opinions:

HPC is nothing more than applying common sense
to the development of your code, once you know
the basics of the workings of the computer!

You don’t need to have a cluster or a fancy
computer to apply HPC. Do it for your thesis, it may
help to get you through faster!

You could see that “this” problem you considered
was to big to be solved with your resources, may
be “solvable”. May be you have not optimized ...

All of them work together connected in the board to
make your job run the way you like.

The performance of the job depends on the job, but
also on the way you use each of these resources.

Our computer has these basic three components

1) Processing units

2) I/O units

3) Storage units

The Computer Processing Unit

✔ Here you do all operations of the system: SO operations,
applications, and of course, run your numerics!

✔ The ideal CPU processor: the fastest one
The largest the CPU clock frequency, the largest the speed of the

calculations
✔ Increase in the speed in current CPU units depends on the

number of electronics (transistors) in the chip.
Technical restrictions to get as many as you like!

✔ This is the heart of the machine…
✔ you work for this guy while developing!

It will work for you latter!

The Computer Processing Unit

A way to “speedup” performance of the CPU is to “divide and conquer” including more
transistors in connected CPU units

Single core: Just one processor (this thing does not exist anymore!)

Multi-core: This is one BIG chip with two or more physical CPUs connected between
them.

Multi-Thread: Multi-Threading is not the same as Multi-Core. Multi-Threading is a way to
use, in the same CPU “streams” in a way that might seem to have two CPUs reducing
IDLE time.

Speed up of about 30%

Core, core... core?

Storage

Long term storage devices
✔ Low rate of IO operations (10, 100 or more times

slower than RAM)
Try to get something from ARCH!

✔ Large capacity
✔ “Permanent” storage of the data

Hard drives

Tape drives

You have long term storage and short term storage

Storage

Short term storage
● Random Access Memory
● CPU registers

✔ Both types of storage are temporal, they have limited capacity.

They are there to store data used during execution.
✔ Size of RAM memory depends on memory frequency. Large in

size but slower in speed than registers.

Also on $$$
✔ Size of cache registers depends on the size of circuitry, but are

faster (closer to CPU) than RAM memory

The ideal sort term storage: Large capacity, large speed.

The problem? $$$$

Memory hierarchy!

HD

This is the source of most
problems in scientific computing

How the computer does his job?

Control Unit does not execute, it drives the execution

Control unit drives the execution:

✔ Takes data from the memory

✔ Manages the execution of pieces of code

✔ Manages the operation of registers

Arithmetic Logic Unit executes instructions (code)

ALU is in charged of the execution of instructions

✔ Arithmetic operations implemented in the ALU:
addition, difference, product, division

✔ Logical operations: =, >, < (and combinations!).

How is the code executed in the CPU?
1) First the executable is loaded to memory and starts execution. Memory
registers and Cache register are created (./exec)

1) Control takes instructions to memory

2) Control decodes the instructions for the execution in the ALU (Instruction)

2) Control moves the required data to the ALU for the execution (Instruction)

3) ALU executes the instructions (execution)
4) ALU the returns to registers, and they start to
move in the hierarchy of memory “like a bubble!”
(execution)

Control manages the way the data is moving across the storage hierarchy
(Cache, RAM, HD, stdout, etc)

Intensive or extensive problems

Intensive computations
● Low memory requirement

● Required CPU execution

● Requires fast execution
times

● Speed of data transfer
between CPU and RAM is
not a constraint

Extensive
computations

● Extensive use of
memory

● Equal or lower CPU
requirement

● Data transfer between
RAM and CPU really
matters

Floating point operations
✔ Much of the power of the CPU is invested attending the

requirements of floating point operations

(They are more interesting for us, they use more memory than
integer operations, they require more operations)

✔ CPUs come with a finite set of Float Point Operation Units
(FPU) that allow the simultaneous execution of multiple float
point operations (flops)

✔ Of special interest are the units devoted to addition and
product, they are more frequent than division units.

CPU is more efficient a doing + and * than /

Floating point operations

✔ There are also fused MultiplyAdd, doing

x=x*a+b

is faster than doing

It is not the same for divisions, in the CPU divisions
are around 20 times slower than * or +

c=x*a
x=c+b

Pipelining

Assume that an operation like addition
can be split up in a sequence of simpler
operations that can be executed in
individual FPUs

If you can have 4 independent additions, in sequence
one FPU can handle 4 operations in a cycle
Net effect → ~1 operation/cycle

This can only take place for independent operations

✔ Pipelines stop when the code has conditions

The CPU won’t stop the execution and continues
executing the code assuming that the answer of the

conditional is positive.

Once there is an answer for the conditional, the
pipeline continues (if the answer was indeed positive)
otherwise, the full stream is repeated!

Dependency, conditions reduce the efficiency of
pipelines.

1) Generate a random number x
s

uniformly distributed between x
min

and x

max

2) Evaluate f(x
s
)

and generate a

random number u uniformly
distributed between 0 and f(x

s
)

3) If u < f(x
s
) accept x

s
, otherwise,

repeat.

x
s

Example:
Simple rejection algorithm for generation of random deviates

If you already know the region in red (rejection) is larger than the region in
green (accept), you know the condition u < f(x

s
) will be in disadvantage.

Choose in your implementation the way you write the conditional.

Get the most probable!

Optimizing the use of cache registers

The CPU has a very limited number of registers (of the order of 50)

a = b + c
d = a + e

In this case the optimization is native. But here are
dependency issues!!
However variables stay in cache during operation!

Here you have made things independent, at the time that all variables
stay in cache registers

How can I make my code run
faster?

✔ Avoid as much as possible the use of IO to HD
✔ Avoid as much as possible the use of division. Especially in long

loops!
✔ If possible, add+multiply (*0.5 is much than /2)
✔ Try as much as possible to implement independent operations.
✔ Reduce the use of conditionals (if) or study your problem to give

priority to the most probable condition
✔ Optimize the use of memory: use the variables you need for the

problem you have

This actually reduces the use of RAM and speedups calculations an
data transfer

✔ Keep spatial and temporal locality in the data to optimize cache
access

Executions In order or out of order?

In order

Out of order

✔ Out of order optimizes the use of CPU time reducing IDLE, but it is at
expenses of energy and Circuitry.

✔ Out of order executions can only be executed if the result of the
operations are independent.

✔ Clarify: memory is not the same as storage HD

✔ Memory is of temporal use

✔ Has very limited capacity

✔ Memory can have large IO velocity

✔ The larger the size of the memory, the larger the size
of the problem you can handle

✔ It may be important to keep in mind synchrony
between RAM chip speed and CPU speed...

Some simple messages...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

