Magnetic Reconnection

ElisaBete de Gouveia Dal Pino (IAG - University of São Paulo

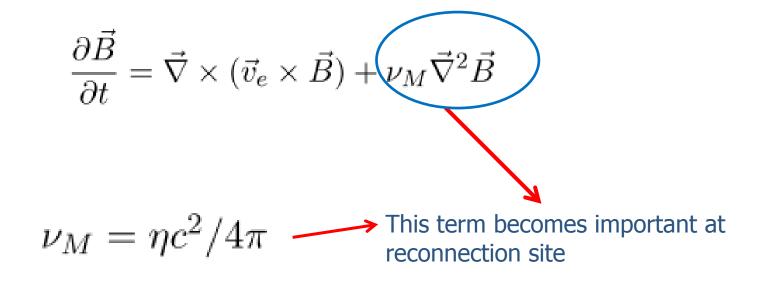
ISYA, Socorro, Colombia, july 2018

Class 4

Part I

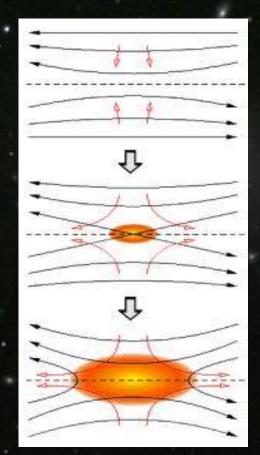
Is B flux freezing always valid?

→ In astrophysical plasmas: flux freezing (IDEAL MHD) valid in general because


$$L, v \gg 1 \rightarrow \frac{Lv_e}{\nu_M} = R_{eM} \gg 1$$

• BUT there are exceptions:

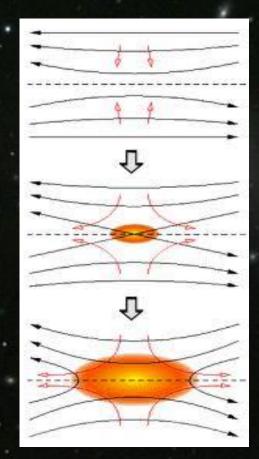
Ex. 1) magnetic reconnection: field dissipation (solar corona, earth magnetosphere)


Ex. 2) MHD turbulence: wandering of lines -> reconnection

In magnetic reconnection sites ideal MHD is not valid

WHAT IS MAGNETIC RECONNECTION?

Approach of magnetic flux tubes of opposite polarity with finite resistivity ($\eta \sim 1$ /conduction): **RECONNECT**


Earth magnetotail

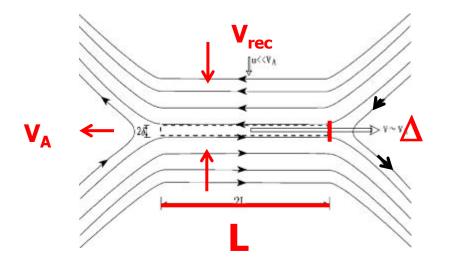
Solar corona

Reconnection is *FAST* in these environments $V_{rec} \rightarrow V_A = B/(4\pi\rho)^{1/2}$

WHAT IS MAGNETIC RECONNECTION?

Approach of magnetic flux tubes of opposite polarity with finite resistivity ($\eta \sim 1$ /conduction): **RECONNECT**

$$\vec{J} = \frac{c}{4\pi} \vec{\nabla} \times \vec{B}$$


In the contact discontinuity the current density is:

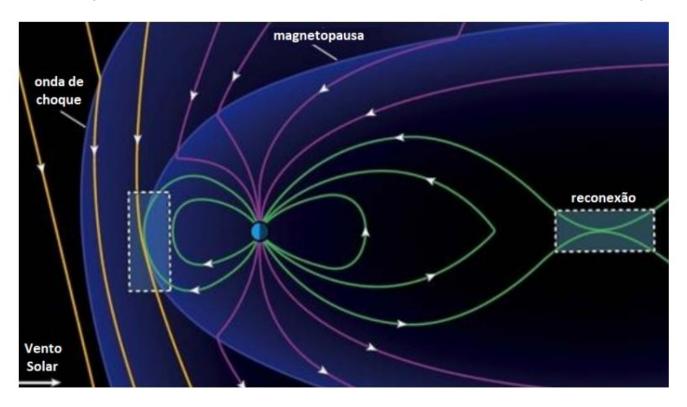
$$J \sim \underline{2Bc} >> 1$$
$$4 \pi \Delta$$

Contact discontinuity is called *current sheet*

Magnetic Reconnection Models

Sweet-Parker (1957) reconnection model:

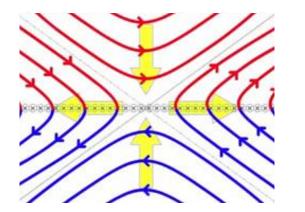
From mass flux conservation in stationary flow:


$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{V}) = 0$$

$$\mathbf{V}_{rec} \sim \mathbf{v}_{\mathbf{A}} (\Delta/\mathbf{L})$$

But ∆/L<<1

 $V_{rec} \ll v_A \rightarrow SLOW$ reconnection !


But what if reconnection is in a point rather than a line? (Petschek model, 1964)

Earth magnetotail

Magnetic Reconnection Models

Petschek (1964): X-point configuration ->

Lines encounter at a point, so that:

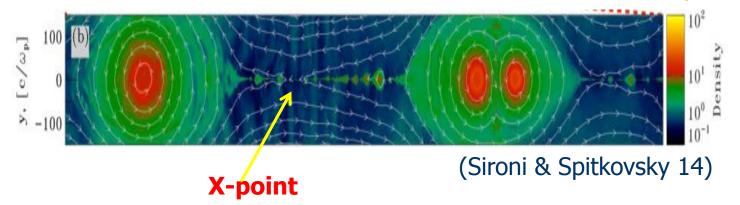
 $\rightarrow \Delta \sim L$

Then reconnection rate is **FASTER**:

V_{rec} ~ π **v**_A/4 ln S

Where $S=L v_A/v_M >> 1$

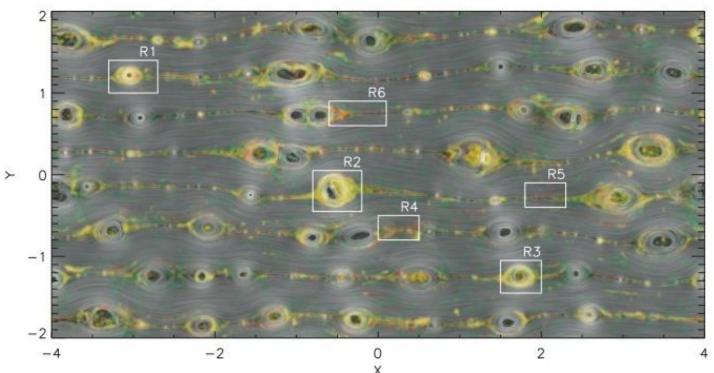
BUT: unstable and evolves to Sweet-Parker (Biskamp'96) **unless**:


pair plasma at kinetic scales with localized resistivity $\eta (\nu_M = \eta c^2/4\pi)$

Fast Reconnection Models in Kinetic Plasmas

Petschek X-point configuration -> arises naturally in **kinetic** (collisionless) ion-e⁻ or e⁺e⁻ pair plasma with localized magnetic resistivity (η)

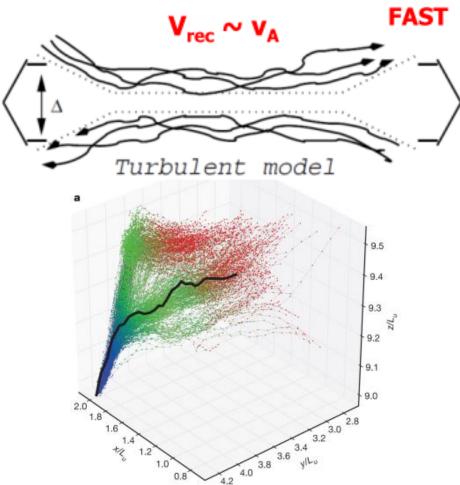
Kinetic simulations: 2-dimensional (2D) Particle In Cell (PIC) simulations of e⁺e⁻ pair plasma :


few plasma inertial length \sim 100-1000 c/ ω_p

Single Current sheet: unstable to **tearing mode** and breaks up into chain of **plasmoids** (or islands)

Fast Reconnection Models in MHD Plasmas

2D MHD (collisional) simulations: in presence of numerical resistivity n

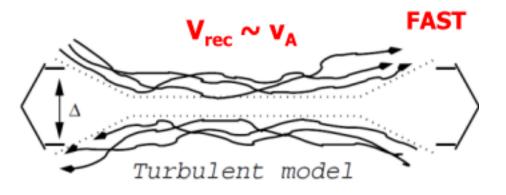


Current sheets: unstable to **tearing mode** and break up into chain of **plasmoids** (or islands)

(Kowal, de Gouveia Dal Pino & Lazarian, ApJ 2011)

Ubiquitous Model of Fast Magnetic Reconnection in MHD flows

TURBULENT RECONNECTION (Lazarian & Vishniac 1999):

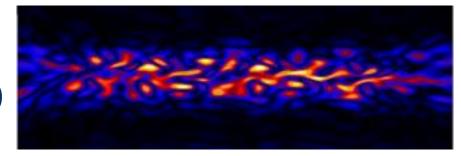


B dissipates on a small scale $\lambda_{||}$: many simultaneous reconnection events

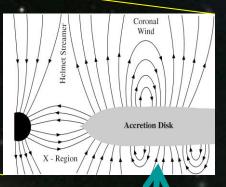
Stochastic wandering of field lines in turbulence leads to Richardson diffusion that breaks the frozen in condition (Eyink et al. 2013)

Ubiquitous Model of Fast Magnetic Reconnection in MHD flows

TURBULENT RECONNECTION (Lazarian & Vishniac 1999):


Reconnection layer : THICKER
THREE-DIMENSIONAL

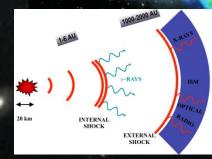
Successfully tested in numerical simulations (Kowal et al. 2009, 2012)


Using MHD turbulence theory (Goldreich-Striddar 1995), we can show that:

$$V_{\rm rec} = V_{\rm A} \left(\frac{l}{L}\right)^{1/2} \left(\frac{v_l}{V_{\rm A}}\right)^2$$

(does not depend on η)

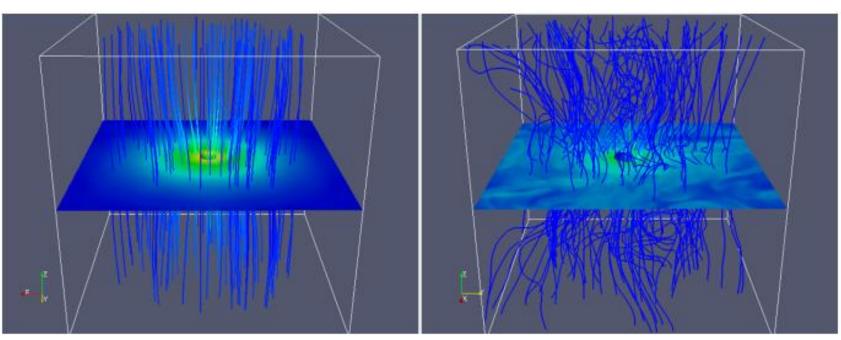
Accretion disk coronae


Star Formation and ISM Stellar Xray Flares

Reconnection beyond Solar System

Pulsars

AGN & GRB Jets

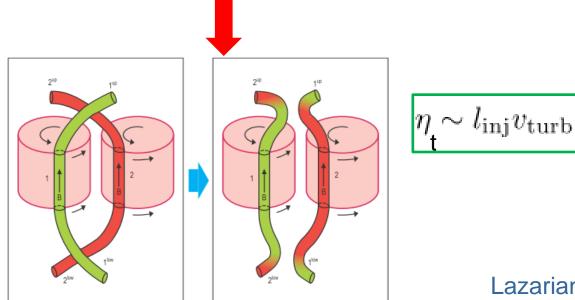

Accreting NS and SGRs

٠

MHD simulation of Self-Gravitating collapsing clouds

Non-turbulent t~ 40Myr

B does not allow core collapse


But with turbulence it collapses

Turbulent

Leão, de Gouveia Dal Pino et al., ApJ 2013

MHD turbulent diffusion: new scenario

In presence of turbulence: field lines reconnect fast (Lazarian & Vishniac 1999) and magnetic flux transport becomes efficient -> there is magnetic flux removal in the collapse of the turbulent cloud!

Lazarian 2005, 2012 Santos-Lima et al. 2010, 2012, 2013 de Gouveia Dal Pino et al. 2012

Reconnection Beyond the Solar System

Stellar X-ray flares (Cassak+08; Shibata+05)

Young stellar objects (van Ballegooijen94; Hayashi+1996; Goodson+1997; Feigelson & Montmerle'99; Uzdensky+'02; 04; de Gouveia Dal Pino+'10; D'Angelo & Spruit'10)

Interstellar medium and star formation (Zweibel89; Lesch & Reich92; Brandenburg & Zweibel95; Lazarian & Vishniac99; Heitsch & Zweibel03; Lazarian05; Santos-Lima+10, 12, 13; Leao+13)

Accreting neutron stars & white dwarfs (Aly & Kuijpers90; van Ballegooijen 1994; Warner & Woudt02)

Accretion disk coronae (Galeev+79; Haardt & Maraschi91; Tout & Pringle96; Romanova+98; Di Matteo+99; de Gouveia Dal Pino & Lazarian01, 05; Liu+03; Schopper et al. 1998; Uzdensky & Goodman08; Goodman & Uzdensky08; de Gouveia Dal Pino+10; Kadowaki et al. 2015; Singh et al. 2015; 2018; de Gouveia Dal Pino et al. 2016)

Pulsar magnetospheres and winds (Coroniti90; Michel94; de Gouveia Dal Pino & Lazarian01; Blasi+01; Lyubarsky & Kirk01; Lyubarsky03; Kirk & Skjæraasen03; Contopoulos07; Arons07; P´etri & Lyubarsky07; Spitkovsky08; Lyutikov10, Cerutti+13)

SGRs (Thompson & Duncan95, 01; Lyutikov 03, 06; Uzdensky08; Masada+10)

Relativisitc jets (microquasars/AGNs/GRBs) (Romanova & Lovelace92; Larrabee+03; Lyutikov+03; Jaroschek+04; Giannios10; Giannios+09, 10; Nalewajko et al. 2010); Spruit et al. 2001; Lyutikov & Blackman01; Lyutikov & Blandford02; Drenkhahn & Spruit02; Giannios & Spruit05, 06, 07; Rees & M'esz'aros 2005; Uzdensky & MacFadyen06; McKinney & Uzdensky10; 12; Uzdensky11; Zhang & Yan09; de Gouveia Dal Pino & Kowal 2015; Singh et a. 2016).

End of class4 part 1