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Reasons to use N-body
Simulations

Exploring the role-on-non:linear dynamical ‘evolution; hard to do in

analytical way:for.more:than 2 DodIES
Studying non=equillibrium; transient processes in-a selfconsistent way.



The Galactic Bulge and Sagittarius
Dynamical Feedback In action

= [he Sagittarius
n satellite

®x  peing disrupted by

» with the
= Milky Way
x |[pata 1994
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ping and Stirring



Spiral Arms and disk rings
secularly or tidally triggered? puca

Riillnck 201 1
a Initial d Milky Way + ‘light Sgr’: present-day (t = 2.65 Gyr)

C t=1.8 Gyr

10 kpc e T




What about M317? Dynamical

state of its satel\ites’? MV (9) b
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Biasing interpretation of observations?
From disk? Migrations. Bulge. From satellites?




Halo Archeology




Galaxy - Galaxy interactions



High redshift Galaxies
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Cosmic Large Scale
Structure growth is a
complex multi scale
DroCess
Transient process are quite
slow so they bias our
iInterpretation



Avold these reasons:

» Easier than analytic solution

= [he only robust solution

® [he most realistic approach



Nbody simulations are just another approach to
dynamical problems

Very useful, but you have to test, and test the robustness
of results

Compare If possible against analytic solutions

, because frequently there is not an analytical
solution



You have a powerful toy, be




Kinetic description in terms of Vlasov-Poisson
The most general way to handle
Density of particles in phase space the problem

= distribution function f(x, v, ) however v::/":::‘.:r;w' at least

Evolution governed by Boltzmann equation

of v
I —
I 'fo_vx¢'vvf—c[f]
gt a-
velocities grav. forces particle-particle
aavect in advect in interactions
configuration momentum =0
space space

+ Poisson equation for grav. potential

for C[f]=0:

Vip = 4%;- (f —p)d™v Vlasov-Poisson




Kinetic description of dark matter You can also use

moments of Boltzman
equation and solve

Density of particles in phase space given by hydro-like equations

= distribution function f(x, v, ()

P "

>

Q

~ | o e .
ot = ® Oe0 00 phase space of n+n dim:
case S| P @ g0 @

2l o R © generally,

T fis truly 2n-dimensional
'S

> In cold limit,
cold = P f is only n-dimensional
case S - :

© = monokinetic

position X




(General Structure of
N-pDody codes

. * Schematically only 2 main parts:
= Density/Force Cal

conditions proble Determine
Advance

Start ms gravitational — At =D End

x Time Integration ﬁe'd l




Initial Conditions: The Art

» |solated

x (Galaxies, halos, etc



Statistical

Self-gravity
equilibrium
m
872 gji (;)?f V20 = 47Gp

Full self-consistency



Method |: Phase Space
FunctIOn e Fully Self-consistent

e But...PSF available only for
idealized symmetric systems

Random sampling?

Quiet Start (Sellwood),
cosmological neutrinos??

Inhibits scatter




Prendergast & Tomer (1970)

* This method works for axisymmetric (flattened)
potentials and an adopted form for f(E,L,)

* [terate
1. guess an initial p(r,z)
. solve for ®@ (e.g. using Poisson solver)

2
3. compute a new p(r,z) = | f d3v
4

complete steps 2 & 3 until changes in p are small
(8 — 10 iterations)

 Adaptable and yields a good equilibrium

But the final stage is not always what we wanted
Sometimes not converging

Starts assuming a spherical disk from the point of view of the halo

Excelent for controlled experiments



Implementation
Widrow Dubinsky for MW/M31

N
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GENERATING INITIAL CONDITIONS




GENERATING INITIAL CONDITIONS SUPERIMPOSING DENSITY PERTURBATIONS

Il
P

5(X) = ¥ d(k)e ™ P(k)

= inflation theory

P(k) = Ak" with n = 1 (Harrision - Zeldovich spectrum)

4

= transferring P(k) across recombination

P(k)=T’(k)P,k)




GENERATING INITIAL CONDITIONS SUPERIMPOSING DENSITY PERTURBATIONS

(%) = ¥ d(k)e™* P(k)= <

)
- F

| T, |
0.1

0.01

0
k / Q_h® Mpc™ captures all the complicated physics
Mue to the coupling of radiation and matter




GENERATING INITIAL CONDITIONS SUPERIMFOSING DENSITY PERTURBATIONS

8(3) = Y o(k)e™” P(k) = (ock)|

CLASS

the Cosnic Limear Anisotropy Solving System

The purpose of CLASS Is  simulate the evolution of Inear perturbaions In the unverse and % compute CMB and large
scale structuwe observables. Its name also comes fromthe fact that # is written in coject-onentad style mimicking the notion
of class. Classes are a worderfull programming feature avaliable e.g In C++ and python, but these languages are knawn %0
be less vectorizabledparalidizable than pain C (or Fortan), and hence potentially slower. For CLASS we choose 1o use
plain C for high performances, while organizing the coce In a few maodules that reproduce the architecture and philasophy
of C++ classes, for optimal readabiity and modularity

Download

The usa of C.ASS is free provided that il you use It in a publication, you will clte at least the paper CLA
(refarence below). You are welkome to cite any other CLASS paper If relvant!

There are twe ways to download CLASS Th-e slrrohsl 1hlng Is to download a tar.gr archive of the latest released (master
branch) version, v2.6.3, by ciiking class o , But If you are familar with gi t repodtories, and you wish to do
modfications to the code, o devebp amw bmnch of t's ooda or see all publc banches and/o old versons, you wil
preder to clore It from the ¢ z gl reposRory.

Documentation
| . . 2 -1
ICTERYUC SR IALIgUT k / Q_h" Mpc

4

’ \ 2
AP, essius Wewidnes  P(k) = T*(k)P(k)
AVILYRCULIL IS ICURWILINWIVID




GENERATING INITIAL CONDITIONS SUPERIMPOSING DENSITY PERTURBATIONS

5(%) = ¥, o(k)e™ P(k)={

e remember linear perturbation theory™:
ISEIRCWTLIUTLTUTUUTSEL TEU TG TSTUTTTIES SR TSRO UL WL I TOT I TCTILS

oo 1. =
density contrast: —+—-—V-u=0 mass congervation
o a
' | du a- 1
peculiar velocity feld —+—Uu=——VO momentum conservation
dt a a

v _2—
AD = 4aGa pé Poisson's equation




GENERATING INITIAL CONDITIONS

SUPERIMPQOSING DENSITY PERTURBATIONS

R - fia = 2\
8(%) = Y, 8(k)e ™ P(k)={|o(k) )
\ /m k
* remember linear perturbation theory™:
728 5
/ A + Zﬁa—( — 4G PO =0 evolution of matter density
ot’ a ot

/
\\
\

|\ A(x,t) = D(1)o,(x)
N

P(k) = D*(1)P,(k)|




GENERATING INITIAL CONDITIONS SUPERIMPOSING DENSITY PERTURBATIONS

= Zel'dovich approximation:

x()=qg+ D(l)g(f"?)“

Ansatz based upon the idea to

displace particles from their initial positions on & regular mesh




SNALINLIEIMNA LTINS LINILIAL NA\UJINUL L INJIND SUFCKINVMIFUSING LJENOSIUT V¥V MERITURDATIONS

= Zel'dovich approximation:

%)= + D0S@)]

_o(x,1)
8, (Fty)
L
d°D dD
gD S8 immed
ot a ot
general solution:
« ]
(1) = Q” C—ar




GENERATING INITIAL CONDITIONS SUPERIMPOSING DENSITY PERTURBATIONS

= Zel'dovich approximation:

(1) =G + D(0)S(G)

« in practice... ~
ky{{}fél‘ ji \ . f rﬂ”k«C: fNIFN flrﬂr

_ . N\ W | 7;/,\/4(,\/\
g = regular grid, i.e. Gt m

5 a-w 1
-} —,dl'
2 “af a’
$(3) = -VW(G) W(G) = FFT™'(W(k))
X R 1
Y= 60 (;k)—2

A

8, (k) =[Py(k)R e

D(f): determines the initial redshift of the simulation

S(q): determines the direction of displacement

R.e”* =R +iR,
K
R,.R, = Gauss(0,1)




GENERATING INITIAL CONDITIONS SUPERIMPOSING DENSITY PERTURBATIONS

= Zel’dovich approximation:

* positions

li() =G+ DS@G)]

¢ yelocities

l5() = D1)S @)




GENERATING INITIAL CONDITIONS SUPERIMPOSING DENSITY PERTURBATIONS

= 20d gpder Lagrangian perturbation theory

(1) =G +D(a)S(G)- DS (G)




CODES: Which one Is the
bestcode?. i

Adaptive Mesh Refinement
(AMR)

x Particle-Particle

®x Fixed Shape, GRIDS, Orthogonal Base



PEEEOUE A

Ecuacion a resolver es Newton: N \
= — Gm]rz]
r; = a; E 3/2 € = soltening
j=1 T'Uz + € )

Con € se suprime el efecto e importancia de encuentros cercanos (i.e.
evita |la colisionalidad).

Los resultados de la simulacion son confiables para ~2¢

Las unidades usadas son talesque: G = My = a, =1



PP Codes

x Challenge: Time of calculation Scales as NA2 (harder
go further than 1e6 particles)

®x Can be used for collision less systems (galaxies, LSS)
but they are not that efficient

® \ery Useful for high density systems (clusters, galaxy
nucleus, binaries decay)



Criteria

® Accuracy: Geometry, capture of relevant processes,

good handling of numerical effects, quality of
iINntegration

® Efficiency: Speed, with the right accuracy



gravitational field use grids
— Cartesian, cylindrical polar, or spherical

— polar grids have additional advantages
Shape may imply disadvantages when systems evolves quickly in shape




e Cylindrical, spherical

CODES: Which %m@ﬂ®E@§
best’?

e Caution, good geometric
choice for the beginning

e What happens if it evolves?

Accuracy decreases

x Fixed Shape, GRIDS, Orthogonal Base



\Vlodern codes currently used
many technigues

x PP-Regularization (analytical 2 body solution for close encounters: binary
formation and destruction)

x PM (PM + Perturbbative solution)
x Tree’s

= Hybrid's

x AP3M(AMR-fixed + pp)

» Tree-GRAPE (Tree-pp)

x [ree-GPU ()

x AMR

x Hybrid’'s



PM CODES Particle-Mesh Method

= numerically integrate Poisson’s equation

Ad)(ék.ll,m) = 4ﬂG[,(§k,l,m) -«
F(8) = —mV(E,,,) -
|. calculate mass density on grid X = PA811m)
2.solve Poisson’s equation on grid D& 1m)
3. differentiate potential to get forces F(801m)
4.interpolate forces back to particles F(g.,,) — FG&)

sounds like a waste of time and computer resources,
but exceptionally fast in practice

COMPUTATICNAL COSMOLOGY




SomePM caveats

= FFT is very efficient

» Regular grid wastes computation time, if the dynamical range
IS large (from galaxies to the universe, from stars-to galaxies)

x Nested PM grids?
= Alilasing effects

x Careful that the Grid-Box-N of particles do not trigger artificial
structure (your project)



v (grid units)

o

N

Force + integrator accuracy

0

X (grid units)

N

examples of
particle’s
trajectory




The Particle-Particle Particle- =
Mesh (P3M) Scheme: o Wi

*This extends the PM method with a direct summation of short-range
forces on the scale of the mesh cells.

+GOO0OD: Increases substantially the spatial dynamic range

*BAD: Highly-clustered states (when the short range force calculations
dominate) are very costly to evolve

*Mesh-refinements may be placed on clustered regions (as in the AP°M
and Hydra codes developed by Hugh Couchman et al) but this suffers
from high complexity (which makes it very difficult to parallelize) and
ambiguities on the optimal choice of refinement placement.



look Marios s
and Peder s talks

Tree Algorithms




Tree algorithms

Oct-tree in two dimensions

*The idea here is to use the fact
that the contribution to the potential

lovel 0 /
/[ of far-away masses is given by the
[ . first few terms of a multipole
I expansion.
lovel 1 ,“"" '. I: . .\ (') ( l‘) ( " ,,I'
’ < A = |r — x|
: We expand:
T 1 l
. I_\ Ir — X;| (r —8) — (x; — 8)
lovel 2 \ o)
] < | _
flo o ° for |xi—s|<K|r—s] y=r-s ———
vanishes outside each
oI5 node
lovel 3 2 c ) J: . -
.\ . A N - .,
[+ | | y-(s-x) 1Y [3s-x)6-x)" -Is-x)|y

|
yt+s=xi| |y y? 2 ly|?




Cosmological simulations with GADGET - Mozilla Firefox

Archivo Editar Ver |Ir Marcadores Herramientas Ayuda

@ 02

SUSE Linux ~ Entetainment ~ News ~ Internet Search + Reference + Maps and Directions +  Shopping + People and Companies ~

Iﬂ http:/‘www.mpa-garching.mpg.de/gadget/ R :; Ir @L

GADGET-2

A code for cosmological simulations of structure formation

General Features

@ Description [
: % 4 Hict | — Hierarchical multipole expansion (based on a geometrical oct-tree) for gravitational forces.

‘ uthors and History . . o .

@ Acknowledgments | Optional TreePM method, where the tree is used for short-range gravitational forces only while long-range

@ News forces are computed with a FFT-based particle-mesh (PM) scheme. A second PM layer can be placed on a

Software high-resolution region in 'zoom'-simulations.

Periodic boundary conditions, either by means of the Ewald summation technique or based on the FFT

@ Download |

@ Requirements algorithm used in the TreePM scheme. Simulations that only follow gas dynamics without self-gravity can be
@ License run in periodic boxes with arbitrary aspect ratios, and also in 2D, if desired.

: 'gﬁ—;ﬂ?gﬁq | — Smoothed particle hydrodynamics with fully adaptive smoothing lengths and a novel entropy conserving

@ Examples formulation of SPH.

|_— Signal-velocity parameterisation of the artificial viscosity, as suggested by Monaghan.

Documentation

@ Code Paper

| — Individual timesteps for all particles. In the TreePM scheme, long-range and short-range forces are integrated
@ Users Guide — with different timesteps.

@ Code Reference | — Work-load balanced domain decomposition and dynamic tree updates.
Publications

Efficient cell-opening criteria for the gravitational tree-walk.

- @ Srcientific Paners m | Cimmart fAar marvallal 1M anAd A& mimalar AfF AifFArant Anbma ik fFAarmates incliidina Hha LINCE fAvrmaat [:

o Aplicaciones Lugares Escritorio ‘A [ = [ i) [ Y| “‘ 2 ’ﬂ H i | é @ KR E ['3' iJ)1) lun 29deoct, 23:05 “”T.

\




GADGET is a versatile TreeSPH N-body code for
cosmological applications

PRINCIPLE CHARACTERISTICS OF GADGET

» Gravity solver based on a TREE or TreePM algorithm
» Hydrodynamics is followed by means of SPH
» Timesteps can be individual and adaptive

» Code is parallelized with MPI for distributed memory
architectures

» Code is written in C and is highly portable

» A basic version of the code is publicly available



GADGET has evolved over the years and is in a process of
continuous change

MAJOR EVENTS IN GADGET'S DEVELOPMENT

1997 first version, serial GRAPE code

1998 first tree code, first
arallel MPI code, serial SPH

1999 large production runs on 512 processors
Cray T3E, SPH in parallel code

2000 Gadget-1.0 released to the public

2001 Gadget-1.1 relcased

2002 complete rewrite, first
versions of Gadget-2

2003 TreePM finalized, code for
Millennium Run written

2004 lots of physics
added to code

2005 public version
Gadget2 released

2006 lots of physics
added to code, Gadget3?



[ GIYE P ON TiAT SISEY
~ 1 LEWTER FLOWD. -

Gasoline

®|\-body Solver (KD=Tree Method, PKDGRAV) and
Smoothed Particle Hydrodynamics

BPhysics: Gravity, Hydrodynamics;: Atomic Chemistry
(Radiative:Feating;- Goolng)

B|Subgrid Physics: Star Formation, Supernova
Feedback; PlanetesimalCollisions

WelelsI2y, siteiela) e Ouirir) 2003, Stzidd2)
CiovarrEite 2 @) 2005, Naruyre



Likely the future In paralelization

efficiency. CHARM++, P-Cello code

5. ChANga (Charm N-body GrAvity solver)

http://librarian.phys.washington.edu/astro/index.php/Research:ChaNGa
http://lwww-hpcc.astro.washington.edu/tools/changa.html

- Barnes-Hut tree code (where leaves can be > 1 particle and there is
multipole expansion for far away particles)

- Softening not as Plummer but cubic spline
- In gravity only mode seems to work well for > 128k cores

- Multi-stepping for timesteps allowed (which does not mean it is
smart to use it)

- Excellent work-load balance (= integrations and particles are
well distributed between the used CPUs) thanks to

CHARM++ runtime system
http://charm.cs.uiuc.edu/software



The quest for higher resolution...

a as perturbations collapse, their size shrinks by orders of
magnitude as matter collapses to overdensities in excess
of 1e6...

a an additional shrinking can be due to expansion if
integrating on a grid fixed in comoving coordinates

2 fixed uniform grid methods are therefore not suitable to
study halo structure in the highly nonlinear regime or

galaxy formation




The AMR Approach

Efficient, reliable finite element methods for uniform grids have
been developed for solving the Poisson and gasdynamics equations.

The Adapfive Mesh Refinement (AMR) methods increase the dynamic
range of grid-based numerical algorithms beyond the limits

Imposed by existing hardware.

The methods have numerous applications in different fields of

physics, engineering, etc.

Now gaining popularity in astrophysics and cosmology




Structured vs unstructured AMR

.- ss8dd l”””
............. s ;,;;“u
e 1 2

1
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4 - -
S sss000m
= T

P

CHE

Structured: hierarchy of rectangular Unstructured: highly flexible
grids or irregularly shaped meshes of refinement meshes, efficient for cases
cubic cells of complicated region geometry and

Arepo uses Sonp@(tpﬁ,qgries; more sophisticated data
Like this one Structures and algorithms




Refining cell by cell

= 5|9A9] NV

a Taken to its limit, one can think of
tree of individual cells or small groups

of cells (quads — 4 cells in 2D, octs — 8
cells in 3D)

s QLO'0Z1L = 2w
0

L
ZEBRE = BO0Qq Jo JEqwnu

0O In this case, the refinement can be
controlled on the level of individual
cells, which allows meshes with
complicated geometries to match
complicated features in the systems
(shocks, filaments etc.)

E
.
.
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-
5
e
s
fye S84
e
o
-
=
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2/D) Ayisuaq O bo

Gttt e = ¢ s e
mniiiiﬁ:"ig “‘iiiﬂgmj LT

0 This approach is used in ART,

An AMR simulation FLASH, AMIGA, RAMSES
with the Flash code




Cosmological and Galatic
AMR codes

3 AP>M (N-body)
H. Couchman 1991

pUb[ZCly available: hitp://coho.mcmaster.ca/hydra/ap3m/ap3m. html

Jd ENZO (N-body + gasdynamics)
G. Bryan & M. Norman 1996

publ icly available.: cosmos.ucsd.edu/enzo/

J Adaptive Refinement Tree (N-body + gasdynamics)
Kravtsov, Klypin & Khokhlov 1997; Kravtsov 1999;

Kravtsov, Klypin & Hoffman 2002




Cosmological a
AMR codes

Includes SN,AGN, MHD, MG
MPI paralellization

RAMSES (N-body + gas dynamics; '
R. Tesyer (http://rfu.cea.fr/Projets/Site ramses/
RAMSES. html)

/

This morning simulation...


http://irfu.cea.fr/Projets/Site_ramses/RAMSES.html
http://irfu.cea.fr/Projets/Site_ramses/RAMSES.html
http://irfu.cea.fr/Projets/Site_ramses/RAMSES.html

http://popia.ft.uam.es/AMIGA/

MLAPM/AMIGA

a A publicly available AMR N-body code
that uses PM and multigrid approaches to
solve the Poisson equation and integrate
particle trajectories

2 Detailed description of the publicly available

'"In Alexander Knebe website
|

uns oIy ailer uic pican




AP3M: HYDRA

Particle-Particle PM schemes (P3M)

Idea: Supplement the PM force with a direct summation short-range force at the
scale of the mesh cells. The particles in cells are linked together by a chaining list.

Offers much higher dynamic range, but becomes slow when clustering sets in.

In AP3M, mesh-refinements are placed on clustered regions

Can avoid clustering slow-down,
but has higher complexity and
ambiguities in mesh placement

Codes that use AP°M: HYDRA (Couchman)




AP>M code (Adaptive P°M)

0 P3M algorithm achieves higher

resolution by complementing
low-res PM force, with higher
resolution small-separation
force calculated via direct PP
Calculation (hence the name:
PPPM or P3M)

21 as matter collapses into halos
PP part of the calculation carries
larger and larger burden.

Simulation slows down or stalls.

give 2 ldea behind AP3M: reduce PP

ew chance to, this , . . load by using PM force calculation
d of code Subgrids introduced adaptively o o
on subgrids introduced in high

in an AP3M simulation around , , ,
. particle density regions
collapsing halos



Critical for any adaptive Nbody method: avoid jumps from one accuracy

level to another

Level 0
Level 1

Level 2

FiG. 1.—The pairwise force as a function of radwus calculated on a 32°
periodic mesh with two levels of refinement. The heavy continuous line 1s the
calculated force, and the dots indicate the modulus of the error in the force.
The curves at the top of the plot indicate the components of the force { x 100)
calculated from the base mesh (level 0), the refinements, and the corresponding
direct sums.

Couchman 1991

3 Gravity force in the AP3M
code is stitched together from
different grids and PP calculation
at the smallest separations

J The same gravity solver
(albeit w/o PP part) is used in

another AMR code — Enzo

refinement criteria AMR

opening angle for Tree




Precursor: Zeus
Descendent: P-Cello (ask me) O The first AMR N-body + Eulerian

E nzo gasdynamics code in cosmology

a Initially developed by Greg Bryan &
Michael Norman in 1996-1998 at UIUC

and NCSA. Currently is developed and

maintained by M. Nor 'S qroup at
. y Igg?’?neg ceﬁ%locks
UC San Diego.
not only cells

—_ Q publicly available (code and
i vcis documentation: cosmos.ucsd.edu/enzo

Distributed hierarchy Grid zones

Combined

Figure 1. A 2D adaptive mesh
refinement example showing a
three-level, four-grid hierarchy. B tcalgud

ghos gnd ghost zone

Processor 1 Processor 2




Adaptive Refinement Tree (ART) code

The ART code refines (and derefines)
mesh cells individually.

We use a fully-threaded oct tree data structure
(hence, the ART name) to support the refinement
mesh hierarchy. The cost is only 2.5 storage
words per cell. [Khokhlov 1998]

This allows for flexible adaptive refinement
structure that can be easily modified. The
meshes can effectively match the complex
geometry of filaments, sheets, and clumps in
a cosmological simulation.
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Faper arXiv:0901.4107

E pur si muove: Galiliean-invariant cosmological hydrodynamical simulations on a moving mesh ™

AV D=
p r-/
Authors: Volker Springsl (MPA) oW MRt Nl N\
Commenta: arcepled in MNRAS, AT pages, 50 figures

Hycredynamic cnsmalngical S muations at presant usually employ echer the Lagrangian smeathed particle hydrocyna mies {SPH) recnnigue, or Euleran hycrodynamics on & Cadesian mesh with {optional) adeptve mesn refinement
(AMR). Both of thesz methods have disadvantages that negativaly impaclt their accuracy it cortain siluations, for example the suporession of fluid instabilitics n the case of SPH, and the lack of Galilcan-invananocz and the prescnce

cavermixing in the case of AMR. We here propase 2 novel scheme which Bigely elimnaes these weaknesses. | is based cn a mavng unstructured mesh defined by the Voronai 1essellation of a set of discrete paints. The mesh & uss
solve ke hyperbolic conscreation laws of ideal hycrodynamics with a finte volume appreach, based on a sccond-order unsplit Eodunov scheme with ar cxact Riemann salver. The mesh-gencrating points can in principle be moved
arbitrawily. If they are chosen 1o ke stationany, e schems i3 ecuivalent ta &n ordinary Eulenan meshod with second onder acturacy. If they instead move with the vl ooty of 1w local fow o0 obtaing a Lagrzngian farmadation of contin
hydrodynamics that does rol suffer frem the mesh distorlicon limitations inherent in oiher mesh-based Lagrangian schemss. In this mode, our new mechod is fully Galileainvariani, unlike ordinary Euleran codes, a propariy that is of
significant importance for cosmological simu Etion s where highly supersonic sulk inwa are cammaon.  In adcition, te new schame can adjust £s spatial resalusinn autamat sy and continuously, 2nd Fence nherits the principal advant
cf SPH for simulations of cosmological sTucture growth. The high accuracy of Eulenan methods in tha trealmeant of shocks is also ret@ined, while tha realment of conlac: discontinuilies improves. We discuss how this approach is
implemented in cur new mode AREPO, bolvin 20 avd 30, and B parzlielized for d stribused memoary computers. We alsa disriss technicues for adapdye refinement ar derefinement of the unstrsctured mesh. We infredoes aa indvic
time-s2ep approach for finite volume hydrodynamics, and present: a migh-accuracy treatment of self-gravity for the gas that allows the new methoc to be seamlesshy combined with a hign-resolution treatmeni of collisionless dark matie
use a auite of test probems 1o examing the pefarmance of the new code and argee that the hydrocynamic moving-mesa schame propnsed here provides Bn atrzct ve and compelitive allerative to current SPH and Euledan technin.

Interacting shock waves reveal significant differences in vorticity production

TWO-DIMENSIONAL INPLOSION FROBLEM
Sijacki ot al. (2011)

GADGET
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Planets, Stars, Galaxies, and in-between
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Solvers

4 Gravity solver:

FFT solver on the uniform (I=0) grid covering the entire volume
relaxation solver for I>0 [Gauss-Seidel + SOR + Chebyshev accel]

potential on child refinement cells is inherited from the parent cells
potential from the previous step is used as initial guess for the next step

 Eulerian gasdynamics solver:

2™ order Godunov solver with piecewise linear reconstruction
[van Leer 1979; Collela & Glaz 1985; Khokhlov 1998]

d Particles: are treated using standard particle -mesh methods

cloud in cell density assignment and force interpolation
2" order leapfrog time integration, interpalation and loss of 2" order
accuracy at the refinement mesh interfaces. ..

d Time integration on each refinement level / is done with time step
dtl - dto/ 2! where dto s the global time step on /=0, set so that the

CFL condition is satisfied for cells on all levels




nNctaAaalioll . R
ART gravity solver Relaxation

when you have a O

n%ﬁb@ﬁf equation Vi) = pT T 5T = V?¢ — p. relaxation equation
poisson /

or can not use

relaxation iteration:
spectral method

@;l-{*l — n + - (Zo\b()) - G(f):l) o /)fjAT

0 although in general relaxation is not a fast method, we have no
choice with irregular meshes of ART...

0 However, convergence of relaxation iteration is much much faster if
we use potential solution from the previous step as initial guess to
initialize the relaxation

0 red-black Gauss-Seidel relaxation scheme with successive over-
relaxation (SOR) further speeds up the convergence
(Hockney & Eastwood 1988; also, Numerical Recipes)

' 1 (n+1
(;;)ll+ — w(p" + (l o Lu)(’)”



roblema de optimizacion: Técnica de relajacion.
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HACC in a Nutshell

e Long-range/short range force splitting: 5. Habib et al. 2016, New Astronomy

» Long-range: Particle-Mesh solver, C/C++/MPI, unchanged for different architectures, FFT
performance dictates scaling (custom pencil decomposed FFT) |L2M@EZ0os GErivEiveE

» Short-range: Depending on node architecture switch between tree and particle-particle
algorithm; tree needs “thinking” (building, walking) but computationally less demanding
(BG/Q, X86, KNL), PP easier but computationally more expensive (GPU)

e Overload concept to allow for easy swap of short-range solver and minimization of
communication (reassignment of passive/active in regular intervals)

« Adaptive time stepping, analysis on the fly, mixed precision, custom /0, ...

RCB* tree
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Nonlinear Structure Formation Simulations with HACC

HACC: Extreme-scale, particle-based
framework for computational cosmology

« Very high levels of performance across
multiple architectures (BG/Q, GPU, KNL,...)

« Focus on absolute, not relative,

performance; first production science code
to break 10 PFlops sustained

Portability

e Uses multiple algorithms and
implementations across architectures, yet
95% of code base remains unchanged

« Programming model: C++/MP| + X
(X=0OpenMP/CUDA/OpenCL/assembly)

Science Targets
e Large-scale structure probes of cosmology

 Exploration of effects of massive neutrinos,
dynamical dark energy equation of state, ...

« Focus on large surveys

Time [nsec] per Substep per Particle

Weak Scaling up to 96 Racks; Strong Scaling, 10242 Particles

100

0.1

0.01

' % Strong Scaling ---&-- \‘
el Strong Scaling ---®--- x
“ Weak Scaling —*— ]

Weak Scaling —+—

Ideal Scaling —
| i | A 1 1 |

N M 1 M M
1024 4096 15384 65536 2621441048576
Number of Cores

Habib et al. SC12, Habib et al. 2016

Performance in TFlop/s



Simulation Challenges Now and in the Future

« Computational Challenges: Next-generation computing —
opportunities and difficulties
Exascale hardware/architecture challenge

e Modeling Challenge: Gravity + gasdynamics, subgrid models, galaxy/
group/cluster modeling
Scalable gravity + cosmological gasdynamics

» Statistical Challenges: Cosmology as a statistical inverse problem,
emulators, machine learning
Robust emulation

M, 1/16384 of QContinuum
run on Titan

| ] i | |
0.001 0.010 0.100 1.000

k [1/Mpc]




Move. Integration Time Step




L = %m(’2 [9% + -léf + 36,65 cos(B; — 6, f)] + émg(’(.?)cos 6, +cosbs).
3 2

There is only one conserved quantity (the energy)}, and no conserved momenta. The two momenta may be writte




Motion/ Particles Trejectories



How to proceed?

x A classic problem in Ordinary Diferential Equations

. Several Methods



Time integration methods

Want to numerically integrate an ordinary differential equation (ODE)

y = [(y)

Note: y can be a vector

Example: Simple pendulum

. q .
@ — —= sIna

[

Yo = v Y] —

‘ YR | ih .‘
jo= [ .
y = 1w ( — T sl Yo )

A numerical approximation to the ODE is a set of values {y(.. Yi-Ya2....
attimes {in,{1,00,...}

There are many different ways for obtaining this.




Explicit Euler method

Yn+1 — UYUn | f(yn>At

Simplest of all
Right hand-side depends only on things already non, explicit method

The error in a single step is O(At?), but for the N steps needed for a finite
time interval, the total error scales as O(At) !

Never use this method, it's only first order accurate.

Implicit Euler method

Un+1 — Yn | f(lj” | 1)At

* Excellent stability properties

» Suitable for very stiff ODE

« Requires implicit solver for y,, .+




y(x)

|
X1

@ .-
I |
I I
b)) X3 X

‘igure 16.1.1. Euler’s method. In this simplest (and least accurate) method for integrating an OD
he derivative at the starting point of each interval is extrapolated to find the next function value. T
nethod has first-order accuracy.




Implicit mid-point rule

. [ Yn
.l,/nJrl — Un | f(

2" order accurate
* Time-symmetric, in fact symplectic

* But still implicit...

Runge-Kutta methods

th
whole class of integration methods 4" order accurate.

2" order accurate 1= (Y. tn)

b ko AL/2,t, + At/2)

f(Yn)

Un I ( ].) -)A/




1.3. Fourth-order Runge-Kutta method. In each step the derivative 1s evaluate:
> Initial point, twice at trial midpoints, and once at a trial endpoint. From these de
10n value (shown as a filled dot) 1s calculated. (See text for details.)



Which one shall we use?

®x Fuler? Tiny steps? Accuracy? Better avoid the explicit
form. What about implicit one? Seems a good one?

®x Runge-Kutta (order? 4th, higher?)
= Mid point

® Burlish-Stoher (prediction, correction at the end of
interval, see N. Recipes)

x  Commonly used and very good integrators
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We try to represent this:

—volution with a constant Hamiltonian (Volume in
nase Space, de
Motion or by Sy

D

1Nec

by Conserved Integrals of

met

les)




Most of the N-body codes use
an scheme called Leap-Frog

= \\Vhy is that?
= Cheap In terms of computation

®x Symplectic



The Leapfrog Integrator

For second-order problems like (4) ir which f depends ony on x, the second-order Legpfrog
integration scheme is widely used. Its simplicity makes it an a:tractive alternative. Howeaver, it
requires us :0 make a modification tc the way we have been thinking about how -- and when -- our
data are defined.

LIp 'o now, we have assumen (quite reasonanly) that all data are synchronous -- that is, all the
components of the vecter 2; are defined at the same time ;. However, in second-order systems at

least, it s often adventageoLs to define the valocties ( v = dx/df) at the mid-points of the intervals --
the velocities are said 10 be staggered with respect 1o the positions x. Setting aside for the moment
how this is accomplished in praciice, let us define, following our earlier convention,

. 3 &\ — « (e«
vz = (i + 18E), i=0,1,2,... (23)

With this de‘inition, we can write down a statement of the Leaofrog scheme that advances x; tc
Ty and Vg1 210 Vg
Tig: = Xi+Wqipdl,
\ £ (24
432 = U0 T+ f(;1?§+1‘ ot . \ )

It Is depicted grephically below. Notice the symmelry between the ways x and v are advanced in
time. You can easily verify by expanding out the Taylor series

v + 161) = w(t) + 16t f () + O(6t?) (25)

that this scheme does indeed give second-order accuracy in x. Infact, it is formally equivalent 1o
the Mid-point or second-order predic:or-corrector methods.

K = ¥ : | >
A 4
t L L L L L

Of course, initial conditicns are rarely specified at the staggered times required by the leapfrog
scheme! Typically, we must use a so-called “self-starting" schems (like Euler, Mic-point or
Rurge-Kutta-4) to take the first half step and establish the valie of 4 ja. The program lsapizcq.c




by Runge-Kutta-4 is systematic, leading to a long-term drift in the orbital parameters, the energy
error in the Leapfrog scheme has no such long-term trend. There is a periodic error over the course

For

oégmgmlltraqt.the same level as the error in the Mid-point scheme, but the errors incurred over the

Sysf)eu glgpa%% ign of the orbit exactly cancel those produced on the incoming segment, so no net

by short peric
time a high order
non-symplectic
integrator

may be a good
choice

0? Leapfrog method is only second-order accurate, but it is very stable.

Leapfrog _
0.0 y “] l"]'“ “I l" I|] ‘|| l" ||' “ “| \‘l‘
Error — ] L _
M
~2.0.-10 ( P RK-4 ]
N A
‘ ‘“‘ | qr’r
n .
—4.0,10°4 ‘ | | P §
Mid—peint | ‘ RiRTs
—60.107 L [P T I T I T [P N
0 z0 40 I &0 100
time

In situations where we are interested in long-term small changes in the properties of a nearly
periodic orbit, and where even small systematic errors would mask the true solution, time-reversible
inteagrators such as the Leapfrog scheme are essential.



Time-Reversibility

You might well ask, ~"Since we have to start off with one of the other schemes anyway, and since
the Mid-point method is already very simple to program, why should | ever bother with the Leapfrog
scheme?" The answer is that, unlike any of the other methods we have described, the Leapfrog

integrator is time reversible -- and that property gives it some very important advantages.

To see the time reversibility explicitly , reconsider equation (24) and imagine that we wished to
“reverse our tracks" and step backward from (£;+1, Zi4+1, Pi+3 ,-2) to (Z:, iy P41 ;2). Applying the

algorithm, we do the following:

’"i-{-l/? = ?)51_3/'2 -+ f{.’I.‘.i+1) (—fSt) ] (26)
Ty = Zip1 T W10 (—&) ;

But these are precisely the steps (in reverse) that we took to advance the system in the first place!
In other words, if we use the Leapfrog scheme to integrate forward in time, then reverse the
velocities (and the sign of the timestep) and use the same integrator to return to time t = 0, we will
arrive precisely our starting point -- not approximately, as would be the case with the other
integrators, but exactly, at least up to rounding error. Verify this for yourself by modifying 1capfreoc.c
to reverse itself and integrate backwards after integrating forward for some interval -- 10 time units,
say.

The Leapfrog scheme is time reversible because of the symmetric way in which it is defined. None
of the earlier schemes have this property, because they all evaluate derivatives in an asymmetrical
way. For example, in the Euler method, it is clear that the forward and backward steps would not
cancel out precisely -- they use different derivatives, evaluated at different times. In the Mid-point
method, which uses an estimate of the derivative at the center of the range, that estimate is still
based on an extrapolation from the left-hand side of the interval. On time reversal, the

corresponding estimate would be based on the derivative at the right-hand edge, and would not
vield oreciselv the same result The difference is small but it is enouah to nrevent the scheme from



Symplectic integrators are designed for the numerical solution of Hamilton's equations, which read

-~

, JH L oH
) = =———= O11C g = ——,
k o0q q op

where g denotes the position coordinates, p the momentum coordinates, and H is the Hamiltonian (see
Hamiltonian mechanics for more background).

The time evolution of Hamilton's equations is a symplectomorphism, meaning that it conserves the
symplectic two-form ¢ p N dq . A numerical scheme is a symplectic integrator if it also conserves this
two-form.

Symplectic integrators possess as a conserved quantity a Hamiltonian which is slightly perturbed from
the original one. By virtue of these advantages, the SI scheme has been widely applied to the
calculations of long-term evolution of chaotic Hamiltonian systems ranging from the Kepler problem to
the classical and semi-classical simulations in molecular dynamics.

Most of the usual numerical methods, like the primitive Euler scheme and the classical Runge-Kutta
scheme, are not symplectic integrators.



Splitting methods for separable Hamiltonians

A widely used class of symplectic integrators is formed by the splitting methods.

Assume that the Hamiltonian is separable, meaning that it can be written in the form
H(p,g)=T(p)+Vig). (1)

This happens frequently in Hamiltonian mechanics, with 7 being the kinetic energy and V the potential
energy.

Then the equations of motion of a Hamiltonian system can be expressed as
:={z, H(z)} (2)

where {-_, } is a Poisson bracket, and Z = (g,p). By using the notation )z = { - H } , this can be
re-expressed as

2= Dyz.
The formal solution of this set of equations is given as
(1) =exp(TDg)z(0). (3)
When the Hamiltonian has the form of eq. (1), the solution (3) is equivalent to

2(7) = exp[7(Dr + Dy )]z(0). (4)



The SI scheme approximates the time-evolution operator €Xp [‘t(DT + DV)] in the formal solution (4)

by a product of operators as
A.
exp[7(Dr + Dyv)] = || exp(e;7Dr) exp(diT Dy) + o), (5)
1=1
where C, and di are real numbers, and K is an integer, which is called the order of the integrator. Note

that each of the operators exp(citDT) and exp(di’tDv) provides a symplectic map, so their product
appearing in the right hand side of (5) also constitutes a symplectic map. In concrete terms,

exp(CiTDT) gives the mapping

r S ~ ‘3_7— )'\ q
1 b q, = 1+ 76 ’9P"‘L' (q)r—% av :
p P p ., p p — 7d; a—q(Q)



The symplectic Euler method is the first-order integrator with kK = 1 and coefficients

Cl = d]_ = 1.
The Verlet method is the second-order integrator with k = 2 and coefficients

C1 = Cyp = = dy = 1, dy = 0.

9 2

A third order sympectic integrator (with k = 3) was discovered by Ronald Ruth in 1983. " One of the ma

C3:1,

d3: 1

~2

Cop — —

dy = - dy =

24

A fourth order integrator (with kK = 4) was also discovered by Ruth in 1983 and distributed privately to the

1
w1005 10

This fourth order integrator was published in 1880 by Forest and Ruth and also independently discovere:

1 1 — 21/3
CL = Cy = — . 0y =C3= —
P T (2 23y 2(2 — 21/3)
1 21;’3
dy = dy = —— T dy = ——— 7t dy = 0.
2 — 2/ 2 — 2

To determine these coefficients, the Baker—Campbell-Hausdorff formula can be used. Yoshida, in partict



Pendulum example

We can motivate the study of geometric integrators by considering the motion of a pendulum.

Assume that we have a pendulum whose bob has mass m = 1 and whose rod is massless of length / — 1.

Take the acceleration due to gravity to be g = 1. Denote by g(¢) the angular displacement of the rod from the
vertical, and by p(¢) the pendulum’s momentum. The Hamiltonian of the system, the sum of its kinetic and

potential energies, is

| .1,
H(q,p)=T1(p)+Ul(g) = ;p" —cosq.

2

P

which gives Hamilton's equations

(g,p) = (p,—sing).
It is natural to take the configuration space Q of all ¢ to be the unit circle §1l, so that (¢,p) lies on the cylinder
gl « P . However, we will take (g, p) € RQ, simply because (g,p)-space is then easier to plot. Define z(¢) =

(q(t),p(t))T and f(z) = (p, - sinq)T. Let us experiment by using some simple numerical methods to integrate this
system. As usual, we select a constant step-size # and write z,: = 2(kh) for & > (). We use the following

methods.

2 154 hf(zk) (explicit Euler),

k
z, + hf(zk Y, (implicit Euler),

.+ hfa.p, . o) (symplectic Euler),

z, + hf((zk L1+19) / 2) (implicit midpoint rule).

zk+l
Zk+1

Zk+l

(Note that the symplectic Euler method treats g by the explicit and p by the implicit Euler method.)



Explicit Euler implicit Euler

=ymplectic Euler imphcit Midpomnt

Simple pendulum: trajectories




Approximate solutions
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Figure 4. A Kepler problem of high eccentricity evolved with different

simple tme integration schemes, using an equal tme-step in all cases. Even



A combination of a pseudo simplectic scheme and a
time step prescription seems to have a slow departure
from the Hamiltionian solution

x Can we do it better?



Hut, Makino, McMillan 1995

® |mplicit: An iterative solution at each step (expensive, In

the 90's, now?) Why shall we care?
Allows larger time steps

: without compromising accuracy?
= \North trying

Anyone?

x ANY ONE?



| esSsoNSs

»x Do not feel overwhelm: Code development and-useis now:a
transdisciplinary: group: project.

® YOU are capable to learn the skills foryour:interest
= Advice: choose carefully the tool for the problem

x [est. Test and test afterwards

® You pretend to have a numerical dynamical experiment including some properties of
the observed galaxy/universe not the actual universe inside the computer

= YOu are trying to test hypothesis not creating the universe (Jout looks like

®x  Sometimes impossible to catch a numerical problem after the simulation has been run



More eficiente Integrators
More flexible and accurate Solvers
More efficient parallelization

New strategy Boltzmann solver??



