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Previously on... astrostats

* \WWe have studied the basic rules of probability and learned
how to estimate probabilities in terms ot a frequency or
repetition of an experiment

e \WWe have learned what random variables are, and we have
seen that we can characterize them with distributions.

 We have seen that PDFs are very common in astronomy,
as they are related to the very problem of measurements
that have uncertainties. But also they appear naturally in
nature (e.qg., the IMF).




This lecture:

We will learn how to use statistics in order to compare our models
of Nature with data obtained with telescopes.

We will learn how the problem of fitting a model to a set of data is
philosophically different for frequentists and Bayesians.

We will learn how we can evaluate how good our fit is to a particular
set of data, given some assumptions.

We will learn how to sample the full posterior distribution of model
parameters, and fully characterize the uncertainties.

We will apply this knowledge to the modeling of SNR spectra.

Lots if credit to J. Vanderplas



Big data In astronomy... then

We owe her the stellar classification

Annie Jump Cannon at her Harvard desk
. system we use today
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She analyzed over 300,000 stellar s
spectra during her lifetime.... by hand.
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Big data In astronomy... now

Images. Limited by spatial resolution.
Spatial resolution explosion with the
next generation of telescopes.

Survey: sdss Program: legacy Target: GALAXY

RA=148.95807, Dec=-0.34230, Plate=268, Fiber=25, MID=51830
2z=0.13468+0.00003 Class=GALAXY STARFORMING

No warnings.

FrT

Spectra. Limited by wavelength [ ]
coverage and spectral resolution. Huge Sl
coverage of millions of spectra in the sky Sl
possible thanks to SDSS. el
IFU spectra. 2D spectra of astronomical T eclengn ngetrom

objects. Spatial and spectral information

together in the same dataset. :
e

UCG 5124 Gas Intensity Gas Velocity Stellar age Stellar velocity

Light curves. Variation of brightness as a »
function of time. Future synoptic surveys T NP

will imply an explosion of light curves. R T |
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The motivation: LSST is coming

* The Large Synoptic Survey
Telescope is a 8.4m reflector

currently under construction in
Chile (tirst light expected in 2021).

e Design concept: a survey that will
take an image of every part of the
entire visible sky every few nights,

in six bands, for 10 years.

* Transients and variable stars: |, e

periodic and non-periodic variable
sources will be studied in detail,

and new types are expected at very
short and very long timescales.




The Large Synoptic Survey Telescope

e [SST is an excellent example of what we mean by the
new data-intensive astronomy

 photometry of the entire southern sky every 3-4 nights
for over 10 years.

e ugrizy multiband data.
* 30,000 GB per night.
* Final catalog: 100s of petabytes P

« ~1000 observations per field




Slide by R. Hlozek
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Challenge: Variability is Diverse

Cepheid Variable Star V1 in M31 Hubble Space Telescope = WFC3/UVIS

e Periodic (RR Lyrae stars, Cepheids)

* Consistent in their periods and amplitudes. | sl an it S S

e Quasi-periodic (Mira stars) o Sl LD

* Dominating frequencies, but no
consistency in phase or amplitude

e Stochastic (AGNs, QSOs)

e Variability without any obvious patterns

e . . . ?
|+ sywbec. 17,2010

NASA, ESA, and the Hubble Heritage Team (STScl/AURA) STScl-PRC11-15a

* Transient (Supernovae, stellar flares, GRBs)

e Short-time changes in flux, non periodic

SN 2011fe
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Variability Diagram
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Light curves are sparse and non-uniform

Jariable Stars

“Rroo I8 G, D155 Shilkiten chlsatmg star, Hipparcos Survey

+ AAAAA MW AAAAAAAAAA n oy |
10ql I AR NSRS N I
|

Eclipsing binary system, OGLE

vvvvvvvvvvvvvvvvv

Flux
N
o o o
L —e—
i
e
—o—
+

Time: jd - 2450726.85418

vvvvvvvvvvvvvvvv

Time (days) http://dotastro.org
_4
Slide: J. Richards.




RR Lyrae Stars: general properties

RR Lyrae stars in M3

Hypergiants

-10
Supergiants The Instablllty S.

) s
EE +5 Main Sequence
2 &
~
<3
+10 Subdwarfs o .
. They have a very distinct light curve and a
period-luminosity relationship that allows us to
13 use them as standard candles
+20 Brown
OlBIA|F[G|K[M]|L 7.2 \
Spectral Class \ RR Lyrae
% 7.4
RR Lyrae are aging horizontal branch 2 \
. £76
pulsating stars that have gone through a red >’ \
. . . T =
giant phase, and are now in the instability > 78 \"\J
strip. Pulsation is due to double ionization of - \J

He due to contraction and expansion of the = 95 00 02 o074 o6 o3
star. Phase



RR Lyrae stars: tracing structure

Globular clusters

el

The dynamical evolution of the galactic
halo takes place at much slower timescales
than the evolution of the galactic disk.
Therefore, the halo keeps old secrets about
the dynamical past of our galaxy: collisions,
tidal tails and streams, etc.

But the galactic halo is mostly dark, except
for the old globular clusters.

N the galactic neighborhood.

% detected
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Every MW satellite has at least 1 RR Lyrae
star detected. The above plot shows how
likely it is to detect a satellite galaxy as a
group of 2 or more RR Lyrae stars that are
sufficiently close.

l.e. the LIKELIHOOD of two or more RR
Lyrae stars to be very close above the
galactic plane is very small.



How to find RR Lyrae stars: a recipe

1. Gather time-series data (with LSST, for example).

2. Detect objects with periodic variations (not so
easy, as we have seen).

3. Fit RR Lyrae templates to light curves.
4. Use light curves to find distance, do the science!

NOT SO STRAIGHTFORWARD!



What if | do not have light curve”

Using stellar models, we can predict

colors based on the physical properties
of stars.
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e Sun |dentification of RR Lyrae stars is also possible

50107 based on their single-epoch colors only.
=2.0x10" g However, contamination is an issue, as you
R, =7.0x10" cm can see above.
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u-g color is sensitive to surface gravity, lo
log g=GM /R’ = 4.44 [cgs] ) Jravity, 19°9

g-r color is sensitive to Teff.



mag

mag

Dense light curves would be more useful, but
with limited telescope time we cannot equally

Characterizing light curves

sample light curves of different timescales.
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Traditionally, classification has been
performed by human experts.

But the upcoming surveys with billions
of sources will make this impossible,

We need to characterize the variation
of astronomical objects automatically.

First step of course is to find the
periods, so we can ‘fold’ the light

curve:
Eclipsing Binary (unfolded and folded)
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Fourier Analysis

Any continuous signal can be The square of the Fourier Transtorm
represented as a series of harmonic gives the power spectrum, which
components. indicates contributing frequency.
y(tlw,8) = Oy + Z Ban—1 sin(nwt) + 04, cos(nwt)] periodic sounds
waveforrms power spectira
IaNia\ M
o} i 300—+z
100 Hz T 40 pure tone,
L L 50 &8
NARVA o .
- 1wt 3 e
200 He QVAVAVAV Clw) = N Zyke * ‘ o
k=1 of \/\/\\ ol e tove
wore VA AN NN i o ol b
\VAAVAAVAAVAAVAS ; i 3w
SO y . Time in Seconds ) % %0
' ] S oE 40 F ‘ tore
100 Hz : o | |
\ - 1 3 Swu
200*Hz A DAY ' 50
+ — : arother
300 Hz j v °: W wE complax
Complex - - 0 l
Wave 2 AMg
time frequency

| could calculate the Fourier transform of a light curve to find which frequency
has more power, but that is computational expensive. Instead...



magnitude

How do we find periods”?

This is a hard problem. One possibility is to use SO you are assuming a sinusoidal model to that
the Lomb-Scargle periodogram method. might not be the perfect description of the
Suppose you want to find the period of this light variability, but it contains the right frequency
curve: info.

LINEAR object 11375941

! bt

15.6 +++*+|'1 +++ + +
SEEE"

-0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50
52750 53000 53250 53500 53750 54000 54250 54500

time (MJD)

You can build a periodogram (namely a plot of

We propose a sinusoidal model for each the strength of each frequency just like in
frequency Fourier analysis.) by defining:
: L. .
y(t; f) = Apsin(2n f(t — ¢y)) P(f) = =[5 — ()]
2
You can fit this model to the data by minimizing 0g  -omb-Scargle Periodogram
the X2 statistic as a function of the parameters 0.7 0.6
Ar and or: 5 06 S o |
2 2 s 0 2 s 4 s T
X (f) = Z (yn T y(tn) f)) % 0.4 | Period (hours) E
2 0. £

n

0.0 0.5 1.0 1.5 2.0 2.5
Period (days)



Multiband periodogram

Single band Lomb Scargle):

We can also use the multi-band y(tlw, 8) = by +Z (05,1 sin(nwt) + B, cos(nwt)] .

n=1

periOdogram (Van der Plas & |VeZiCI 15.5 Folded Data (P=0.622 days) 1.0 1-term Periodogram

2015) to estimate periods. oy — v W —

15.8 10 2-term Periodogram
° .
S 159 5 oo
§ 3 0.4
(o] o
g 16.0 S 0%
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Outperforms existing methods,
specially for non-simultaneous, o §§§WMMWMMW~L«M

sparsely sampled multi-band LCs.

phase period (days)

yk(tlw,0) = O + S Mease [0y, sin(nwt) + Oy, cos(nwt)]  +

Method is linear on the 0 ) h )
9( ) | EMband [9( ) ', sin(nwt) + Qén) cos(nwt)} :

parameters, and thus it is fast.
Folded Data, 1 band per night (P=0.622 days) Standard Periodogram in Each Band
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power + offset

Regularization is the key to allow



Estimating errors in
distribution parameters

How do we estimate the significance of
our period estimation? i.e., how do we
estimate some kind of uncertainty?

Let’s roll back to our discussion of photon
arrivals on a Chandra ACIS detector.

As you remember, this had (almost) a
poisson distribution.

Suppose you wanted to estimate the error
In the mean or the o distribution the
results from sampling it.

One general method to estimate errors
directly from data is bootstrapping.

0.10
0.08

0.06
Z

0.04 '

0.02 > .

0 10 20 30 40
No. of photons

|deally, you would want to get many
samples from the true population (not just
one sample).

But you don't know the true population, so
you use the empirical distribution of your
sample.

You draw many ‘samples’ by resampling
the empirical distribution with replacement.



What i1s Bootstrap

Bootstrap is a resampling procedure.
X = (X1,...,Xy) - a sample from F
X* = (X7,...,X) - a simple random sample from the data.

A

@ iIs an estimator of @

0" is based on X

=X, 0* = X*
X 1 n B 1 n

— X’L_X’n,2v * X*_X*2
0 n; )?. 0 n; ;=X
0* — 0 behaves like 6—0




Nonparametric and Parametric Bootstrap

Simple random sampling from data is equivalent to drawing a set
of i.i.d. random variables from the empirical distribution. This is
Nonparametric Bootstrap.

Parametric Bootstrap if X7,..., X are i.i.d. r.v. from
H,, an estimator of F' based on data (X1,...,X,).

Example of Parametric Bootstrap:

X1,..., X, i4.d. ~ N(u,0?)

X5, .., Xpiad ~ N(Xp,82);  s2 ==y 0 1(Xi— Xp)?

N(X,,s2) is a good estimator of the distribution N (u,c?)




Periodogram: peak significance

How significant is the highest peak in the Lomb- Lomb-Scargle Periodogram

Scargle periodogram? 0.7 _ 06 H“ |
0.4
: §-0.2 ' ‘ ‘
0.0

l.e., How likely is it to get a peak that high under ‘1 2 |3 4 5
the assumption that there is no periodic signal in
the data”?

© o o
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We can use bootstrap to answer this question:

o
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Period (days)

1. Resample with replacement the
periodogram keeping the temporal meigoboited slgiso2-dmol

variable fixed. ‘ H“

2. In each case, record the resulting
maximum of the periodogram.
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For enough resamplings, the distribution of
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SDSS

The Sloan Digital Sky Survey is
one of the most successful &) e apeer 8
surveys to day. It has obtained

It has collected over 3.5 \ / .

million spectra and
photometry for over 500 million .
objects in 15 years, and the *
current catalogue has a size Of  wiyway wapper
over 30,000 GB.

Black Hole Mapper
North

Milky Way Mapper
North

Black Hole Mapper
South

. . / “’ ‘
Multi-epoch observations of Y / e
millions of sources. g |

. aaaaaa Q)
Local Volume Mapper T
, \ . S@uth APOGEE + BOSS Spectrographs
lllllllllllllll -
SDSS is currently preparing for o i
nnnnnn ield Spectrograpl =

its phase V (all-sky, multi-
epoch spectroscopy)



SDSS Stripe 82
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* 5 bands: ugriz

e ~60.000 variable sourcesh ©

e ~50 epoch/object

* photometry roughly simultaneous across bands.

We will now look at a dataset from Stripe 82 and search
for RR Lyrae stars



Exercise:

Finding periods of variable stars

Load the Light Curves provided.

Plot the unfolded light curves in the different SDSS bands. Can
you say anything about cadence (How often are datapoint
taken?)

Use the Lomb-Scargle periodogram method to find the most likely
period of the lightcurves. Is the period found similar in all bands?

Plot the folded light curves? What kind of variability do you see”
The use of bootstrapping

See Jupyter notebook.



