

Observatório do Valongo

IRAF – get it running!

- Go to /home/isya
 - Type ./iraf on command line -> this will open an *iraf* terminal and a *ds9* window
 - On *iraf* terminal, type:
 - set stdimage = imt2048

Note:

Will need to type this again if you restart your iraf window. Can also alter this directly on the login.cl file, or better yet, create a loginuser.cl file and input this line.

(1) Remove readout noise

- Subtract (master) bias image from all images

(1) Remove readout noise

- Subtract (master) bias image from all images
 - First, need to create master bias:
 - Identify all bias frames from the observing run:
 - Use log sheet
 - Verify with image header information

Which information on the header is revealing of a bias?

(1) Remove readout noise

- Subtract (master) bias image from all images
 - First, need to create master bias:
 - Identify all bias frames from the observing run:
 - Use log sheet
 - Verify with image header information
 - With iraf, hselect bias*fits \$I,\$EXPTIME yes

(1) Remove readout noise

- Subtract (master) bias image from all images
 - First, need to create master bias:
 - Identify all bias frames from the observing run:
 - Use log sheet
 - Verify with image header information
 - With iraf, hselect bias*fits \$I,\$EXPTIME yes
 - With *iraf*, imcombine:
 - imcombine @list MasterBias combine=median
 - OR, if you've set all bias frames in a separate folder:
 - imcombine * fits MasterBias combine=median
 - Can also look at the full list of editable parameters:
 - epar imcombine
 - **Repeat for (master) darks!** (details in a couple of slides)

(1) Remove readout noise

- Subtract (master) bias image from all images
 - With *iraf*, imarith:

imarith AGN2200-181_006 - MasterBias AGN2200-181_006_b

Karín's way of keeping track of what has been done to images!

- Repeat for all other images:
 - -> MasterDark_10s_b.fits
 - -> MasteDark_300s_b.fits
 - -> MasterFlat_B_b.fits
 - -> MasterFlat_I_b.fits
 - -> std1_..._b.fits
 - -> std2_..._b.fits
 - -> AGN..._b.fits

(2) Remove dark current

- Create master darks (one for each exposure time):
 - Identify all dark frames (and respective exposure times) from the observing run:
 - Use log sheet
 - Verify with image header information
 - With iraf, hselect DARK*fits \$1,\$EXPTIME yes
 - -> MasterDark_10s.fits
 - -> MasteDark_300s.fits

(2) Remove dark current

 Subtract (master, bias-subtracted) dark image from all (biassubtracted) images with same exposure time imarith MasterFlat_I_b - MasterDark_10s_b MasterFlat_I_bd imarith MasterFlat_B_b - MasterDark_10s_b MasterFlat_B_bd

imarith AGN2200-181_006_b - MasterDark_300s_b AGN2200-181_006_bd

Karín's way of keeping track of what has been done to images!

(2) Remove dark current

 Subtract (master, bias-subtracted) dark image from all (biassubtracted) images with same exposure time imarith MasterFlat_I_b - MasterDark_10s_b MasterFlat_I_bd imarith MasterFlat_B_b - MasterDark_10s_b MasterFlat_B_bd

imarith AGN2200-181_006_b - MasterDark_300s_b AGN2200-181_006_bd

Karín's way of keeping track of what has been done to images!

Need to identify which science images are useful

- i.e., no need to include field-recognition images
 - Use log sheet
 - Verify with image header information (exptime, filter)
 - With iraf, hselect AGN*fits \$1,\$EXPTIME,\$FILTER yes

(2) Remove dark current

 Subtract (master, bias-subtracted) dark image from all (biassubtracted) images with same exposure time imarith MasterFlat_I_b - MasterDark_10s_b MasterFlat_I_bd imarith MasterFlat_B_b - MasterDark_10s_b MasterFlat_B_bd

imarith AGN2200-181_006_b - MasterDark_300s_b AGN2200-181_006_bd

Karín's way of keeping track of what has been done to images!

-> MasterFlat_I_bd.fits
-> MasterFlat_B_bd.fits
-> AGN..._bd.fits

(3) Flat fielding

Variations in sensitivity across the focal plane. Three main culprits:

- vignetting
- surface defects of the CCD
- shadows cast by dust

More details: http://spiff.rit.edu/classes/ phys445/lectures/flats/flats.html

Flat-fielding your images – what does it mean?

- Objective:
 - give different weights to different pixels to factor in the different pixel sensitivities
- Use the flat field image as a grid of weights: values: -> 1
 - Assign a smaller weight to pixels that are very sensitive and a greater weight to those that are less sensitive

Flat-fielding your images – what does it mean?

• Objective:

- To effectively flat-field your science image, divide by the normalized flat
 - The counts in the most sensitive pixels will not change much, while the counts of the less-sensitive pixels will be "pumped up"

http://www.astro.uni-bonn.de/~mischa/datareduction/superflat.html

(3) Flat fielding

- Divide (bias-/dark-subtracted) images by the normalized, bias-/dark-subtracted (master) flat for each filter
- How do you normalize the master flat?

(3) Flat fielding

- Divide (bias-/dark-subtracted) images by the normalized, bias-/dark-subtracted (master) flat for each filter
- How do you normalize the master flat?

imstat MasterFlat_B_bd fields="npix, mean, stddev, min, max"
imarith MasterFlat_B_bd / <max> MasterFlat_Bnorm

imarith AGN2200-181_006_bd / MasterFlat_Bnorm AGN2200-181_006_bdf

Reduced science image!

-> AGN..._bdf.fits
-> std#_<filter>_bf.fits