COSMOLOGY: PRINCIPLES

OBSERVATIONS



TEXTO

LET'S LOOK AROGUND US
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Morphological Hubble Sequence
A Galaxy Zoo

Galaxies are fundamental building blocks
of the visible cosmic Large Scale Structure
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Each colored dot corresponds to a galaxy in a different cosmic epoch:
Cosmic Structure
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Homogeneity of the Universe

*Deep counts of galaxies provided the first
observational arguments for homogeneity of the
Universe. If the distribution of galaxies is

Galaxy counts testing Homogeneity
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e SDSS tested homogeneity of distribution of luminous red galaxies (LRG). Average number-
density of LRGs inside a sphere of radius R approaches constant for R > 30h~! Mpc. There
are very strong inhomogeneity at smaller scales. Disjoin regions on the sky of size ~ 2 X

107h~! Mpc3 have variations of 7 percent around the mean density: clear sign of homogeneity

on large ~ 30 — 50h~! Mpc scales.
Luminous Red Galaxies

http://classic.sdss.org/dr3/products/general/edr_html/node53.html

SDSS telescope 2mts

1e6 galaxies with spectra
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l0g1p scoled density inside comoving spheres of rodius
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Average comoving numberdensity (i.e., number counted divided by expected number from a homogeneous random catalog) of LRGs

inside comoving spheres centered on the 3658 LRGs shownin Fig. 1, as afunction of comoving sphere radius R. The average over all
3658 spheres 1s shown with squares, and the averages of each of the five R.A. quantiles are shown as separate lines. Atsmall scales,

the number density drops with radius, because the LRGs are clustered; at large scales, the number density approaches a constant,
because the sample is homogeneous. g

Hogg et al 2005
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The sky distribution of discrete sources at 1.4 GHz
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* The distribution of discrete sources on the sky
is extremely isotropic.
=> nearly all RGs in a flux-limited sample are extragalactic

= A similar plot of the brightest galaxies selected at optical

or near-infrared wavelengths 1s much clumpier than the radio
plot

=> the strongest extragalacticRGs are much farther away than
the optically brightest galaxies.

Only 1% of RGs in a flux-limited sample < 100 Mpc

» RGs are at least as clustered as optical galaxies, but the
average distance between RGs 1s much greater than 10 Mpc,
=> their clustering can be detected by sensitive statistical tests.
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ISOTROPY

CMB: MICROWAVE RADIATION WITH BLACK BODY ENERGY DISTRIBUTION IN ALL DIRECTIONS WITH HIGH ACCURACY
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Blackbody spectrum of CMB,
measured by COBE (1990)




Planck 2018 results. I.
Overview, and the cosmological legacy of Planck
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ABSTRACT
The European Space Agency's Planck satellite, which was dedicated to studving the early Universe and its subsequent evolution, was launched
on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013, producing deep.
high-resolution, all-sky maps in nine frequency bands from 30 to 857 GHz. This paper presents the cosmological legacy of Planck, which currently
provides our strongest constraints on the parameters of the standard cosmological model and some of the tightest limits available on deviations
from that model. The 6-parameter ACDM model continues to provide an excellent fit to the cosmic microwave background data at high and low
redshifl, describing the cosmological information in over a billion map pixels with just six parameters. With 18 peaks in the temperature and
polarization angular power spectra constrained well, Planck measures five of the six parameters to better than 1 % (simultancously), with the
best-determined parameter (0,) now known to 0.03 %. We describe the multi-component sky as seen by Planck, the success of the ACDM model,
and the connection to lower-redshift probes of structure formation. We also give a comprehensive summary of the major changes introduced in
this 2018 release. The Planck data, alone and in combination with other probes, provide stringent constraints on our models of the early Universe
and the large-scale structure within which all astrophysical objects form and evolve. We discuss some lessons learned from the Planck mission,
and highlight areas ripe for further experimental advances.
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(Affiliations can be found after the references)

July 18, 2018



TEXTO

ISOTROPY AND HOMOGENEITY

» Isotropy: Family of triplets (angles: alpha,betha,gamma)
wich respect them the whole universe looks the same

» Homogeneity: Family of referente frames (trajectories)
wich respect to them the Universe looks identical. An
homogeneous system looks Isotropic for at least 2
observers (way to test it)
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(Geocentrism re-examined

Jeremy Gocdman”
Frneeton Umversity Observaiory, Peyion fail, Princeion, NJ U8544
(15 Maxch 1995’

Abstract

Observations show that the universe is nearly isotropic on verv large scales
It 35 mmsh mare diffsolt e show that the universe is radizlly hemaogenenns
that i=, independent of cistanee from 1s-or conivalently, that the nniverse
s wobranic abous disiant painks, This s usoally swken as s axiomn, sinew
otherwise we wouke cocoupy a special position, Here we consider several en-
pirical arzuments for radial homogeneity, all of them based cn the cosmic
microwave background (CMB). We assume that physical laws are uniform,
but we suppo32 thas structure on very large scales may not be. The tightest
limits far inhomogencity on the seale of the karizon appear to be of order Ten
pereemn. hesp invalve chaarvations of frna Simynev Ze 'dovich effect in clos
ters of galaxies, excitation of low-erergy atoinic trausitions, and tae accuraely
thermal spectrum of the CMB. Weaker lirnits from primerdial auclecsynthesis
are discussed briefly.

98.65, 98.80. €5.10, 95.30




I, =(1-f)B,(To) + fB,T)
~ By[(1 - NTo+ [T] + O(AT®), (1)

where £3,(1y) and £,(1;) are the direct and reflected spectra. We have assumed that the
spectrum in any single direction is thermal. The combined spectrum is not, unless 7. = Tj,
but it can be approximated by a thermal spectrum to first order in T, — Tj,.

Electron,scattering serves as such a mirror. One requires a cluster of galaxies at redshift
zq ~ 1 with a nommealigible electron-scattering optical depth, 7. If the cluster fills the
telescope beam, the observed speetum summed over polarizations is, for 7 < 1,

2nd term test of

JoPs — (1—7)B.(Tp) + 7/ 2(1 + coqzz'*)l’(ﬂ) il
1™ homogeneity
010

+ Y- 3,(1h), 2
v v? v ) isotropic for them( a)nd

where B, (7p) is the unscattered thermal spectrum, obtained from oth01 lines of sight; (1 +
zq)I!(€2) is the specific intensity at the cluster in the direction ; ark? WU the scattering
angle between this direction and the line of sight. The factor of (1 4+ cos?1)) expresses
the angular dependence of electron scattering, sumrmed over polarizations. Similar formulae
hold for the individual polarizations, with integrands depending differently on the scattering
angles. The third term on the right of Eq. (2) is the Sunyaev-Zel'dovich distortion due to
the finite temperature of the electrons (T, > Tp): y = 7kpT:/m.c? [12]. Since the first and
last term have a known dependence on frequency, multifrequency observations can be used
to constrain the middle term.




The kSZ effect as a test of general radial inhomogeneity in LTB cosmology

Philip Bull, Timothy Clifton, Pedro G. Ferreira
Submitted on 10 Aug 2014 (v1), fast revised 4 Jan 2012 (thus version, v3))

The appzrent accelerating expansion af the Universe, determined from nhservatians of distant superravae, and often traken ta imply the existence af dark energy. may a'ternatively be explzinad by tha
effects of a giant underdense void if we relax the assumption af homogeneity an large scales. Recent studies have made use of the spher cally-symmetric, racally-inhomogenenus | emaitré-Ta man-
Rondi (I TR} madels to derive strang constraints on this scenario, particularly from ohservations of the kinemat.c Sunyzev-Zel'davick (kS7) =ffect wh ch is sensitive te large scale inhomageneity.
However, meost of these previous stud 2s 2xplicitly set the LTB 'bang time' function to be constant, reglecting an important freedom of the general solutions. Here we examine these madels in full
generzlity by relaxing this assumption. We find that altkough the extra freecom allowac by varying the bang time is suficient to account for some observaoles indiv dua'ly, it is rot €enough to

s multaneously explain the supernovas observations, the smal'-angle CMB, the local Hukbble rate, and the k3Z effect, This set of cbservables is strong y corstrain ng, anc efectively rules out simpla L78
mocels as an explanation of cark energy.

Comments: 4 pages, 2 figu-es. Minor update to match the publized version (includes typo co-rection 1 Eq. 10)
Subjects: Cosmalogy and Nongzlactic Astrophysics (astro-ph.CO) Czneral Selativity and Quantum Cosmoloqy (gr—-gc)
Journal reference: Phys Rew. D &5, 024002 (2012}
Dok ~0.1103, PhysRevD.85.0240C2
Clee as: arXiv:1108.2222 [astro-ph.CO]
(or arXiv:1108.2222v3 [astro-phCO] Tor this version)
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Probing cosmological isotropy with Planck Sunyaev-Zeldovich

galaxy clusters

C. A. P. Bengaly, Jr.,'* A. Bernui,' 7 J. S. Alcaniz,': I. S. Ferreira®>$

1Observatério Nacioral, 20921-400. Rio de Janeiro - RJ, Brasil
2 Instituto de Fisica, Universidade de Brasilia, 70910-900, Brasilia - DF. Brasi!

3A!‘(,', AstroPariicule et Cosmologie, Universite Paris Diderot, 75205 Paris Cedex 13, France

1 December 2015

ABSTRACT

We probe the hypothesis of cosmological isotropy using the Planck Sunyaev-Zeldovich (PSZ)
galaxy clusters data set. Our analyses consist on a hemispherical comparison of the clusters
angular distribution, searching for a preferred direction in the large-scale structure of the Uni-
verse. We obtain a maximal dipolar signal at the direction ([, b) = (53.44°,41.81°) whose
antipode points toward (/,») = (233.44°,—41.81°). Interestingly, this antipode is marginally
consistent with the anomalous Cold Spot found in the Cosmic Microwave Background, lo-
cated at (L&) =~ (2097, —57°), which might bg possibly aligned with a supervoid at z ~ 0.2
with ~ 200 Mpc/h of radius. The statistical significance of this result 1s asscsscd with cnsem-
blcs of Montc Carlo rcalisations, finding that only a small numbcer of runs arc ablc to rcpro-
duce a close direction to this one, hence rejecting the null hypothesis of such direction being
a random fluctuation of the data. Moreover, the PSZ catalogue presents a mild discrepancy
with the isotropic realisations unless we correct some effects, such as the non-uniform expo-
sure function of Planck’s observational strategy, on the simulaled data sets. We also perform
a stmilar analysis to a smaller, albeit optimised sub-sample of PSZ sources, finding a better
concordance with isotropic realisations, yet no correlation with the supervoid is obtained this
time. Thus, we conclude that the dipole anisotropy found on galaxy clusters angular distri-
bution can be partially attributed to an anomalous feature in the large-scale structure, though
the significance of this result is sufficiently recuced when corrections to systematic effects are
taken into account.

Key words: Cosmology: Observations; large-scale structure of Universe; galaxy clusters

Isotropy test too



Probing cosmological isotropy with Planck Sunyaev-Zeldovich galaxy clusters 5

Sl -> rms deviation from mean number density of clusters at different angular scales
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Figure 5. Left panel: The dipole-only contribution of the sigma-map of the PSZ-cosmo sub-sample (Figure 4, right panel). Right panel: The angular power
spectrum, {S ;}, obtainad from the sigma-map of the PSZ-cosmo sub-sample (Figure 4, right panel), compared with the angular power spectra from the isotropic

and anisotropic MC ensembles.
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Linear Relation V=Hd
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TEXTO

FUNDAMENTAL FORCE DRIVING UNIVERSE EVOLUTION?

» Color/Strong: Confinement inside nucleons, short range
» Weak: Short Range

» Electromagnetic: lonized Universe. CMB Black Body
spectrum limits, different from synchrotron

» Gravitacional



TEXTO

ELEMENTS NEEDED TO BUILD A UNIVERSE MODEL

» Evolution driven by Gravity
» Observer independent description: General Relativity (GR)

» Homogeneous and Isotropic: observational constraints.
Defines GR Metric

» something else?



A
r” ;‘ a
= o
-
' | T

l-|<_:ure “(g) |

\
f ///

4
/!
/

f - .. .. ..

no gravity no gravity CRAUITY
no accel INI FORM

Some
Corrections Fiawe 1a)|
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TEXTO

WE NEED TO SOLVE EINSTEIN EQUATION

» We must include the Cosmological Principle Homogeneity
and Isotropy

» We have 3 spatial dimension and 1 temporal

» G tensoris an object that requires the metric: invariant
distance in an arbitrary space



Spherically Symmeiric Homogeneous Space-1Time. Suppose that the dimen-
sionality of the whole space-time is N = 4, that three of the cigenvalues of its
metric are positive and one is negative, and that it has maximally svmmetric three-
dimensional subspaces whose metric has positive eigenvalues and arbitrary curva.
ture. Then there is one v-coordinate and three u-coordinates, and (13.5.27) gives

" k{u - du ‘21

— dt? = g(v) dv® + fv) {du g ;

where f(v) is a positive function and g(#) is a negative function of v. 11 is very
convenient to define new coordiates ¢, v, 0, ¢ by

. justification?
J(— g{v)? dv = ¢

Weinberg, Gravitation & Cosmology

u' = rsin b cos @
#? = rsin @ sin @
w> = 7y cos ()
We then have
dt® = dt* — R*1) il ‘[’”‘ I r*dO? 4 ¢ sin? 0 dq{l} (13.5.32)
— '?

where K1) = \,"; f(»).

The first two examples show how it 18 possible to capture the essence of
spherical symmetry by giving a qualitative description of a space or spacc-iime
in terms of dimensionalitieg, signs of eigenvalues and curvatures, and the maximal




2 The Robertson-Walker Metric

The formulation of the Cosmological Principle given in the last section allows
us to apply the results of Section 135 for spaces with maximally symmetrie
subspaces. We see immediately that it must be possible to choose coordinates
r, 6, ¢, t, for which the metric takes the form given in Eq. (13.5.32):
i s justification?

~ (1 a 1‘
d1? = dt* — R*(t) {—-- : — + r2dA* + r?sin? 8 drﬁ‘l. (14.2.1)
e 'Tlv

where R(t) is an unknown function of time, and & is a constant, which by a suitable
choice of units for  can be chosen to have the velue +1, 0, or —1. (These are not
necessarily the same as the cosmie standard ccordinates introduced in the last
scetion, although ¢ 1n Eq. (14.2.1) 15 the cosmic standard time. or a function of it.)
The metrie (14.2.1) is known in cosmology as the Robertson- Walker metrie.

It is interesting to consider the geometrical properties of the three.dimensional
spaces of constant 1. These have metrie

3, - B0
n I — kr?

900 = t2RUE)  Og,, = v sin? ORY(t)  (14.2.2)
with 3,(;,“, vanishing for u $ v. Comparing with (13.3.23)-(13.3.25) shows that the

three-dimensional curvature scalar 1s

SKit) = kR™2() (14.2.3)

For k = —1 or £ = 0 the space is infinite, while for 2 = +1 it is finite (though
unbounded). with proper circumference given by Eq. (13.3.33) as

. = 27 R() (14 2.4)

and proper volume given by Eo. (13.3.29) as
3V = 2n2R3(r) (14.2.5)

For & = +1 the spatial universe can be regarded as the surface of a sphere of
radius R(t) in four-dimensional Euclidean space (see Section 13.3), and E(t) can
justly be called the “radiue of the unmiverse.” For £ = -1 and £ = 0 no such




Cosmology in a Nutshell...

Einstein's Field Equation

1 3G
Ryv i égpvR i gILlIA = _04— I’uv

Cosmological Principle
Universe is homogeneous § Isotropie

¥
o
a
'

Riemanniaﬂ Gmme.rry ) ‘,'

Friedmann-Robertson-Walker Metric

Friedmann Equations

ds? = a?(7) [d'r2 —di? — £z () (d92 + sin? 9d¢2)]

(e)’_w _k2&  Ad




i.e. spatial terms only. g0; — 0 because isctropy — no preferred direction
(cf Schwarzschild). For dl? we look for a 3D-space of constant curvature,
anzlagous to the surface of a sphere.

Consider the surface of a sphere in Euclicean 4D. Using Cartesian coor-
dinates (z.y.2,w), but replacing (z.y.2) by spherical polars (p,@.9), we
have

di* = dp? + o dO? + dw®,

where d€)? is short-hand for the angular terms. Also
2 2 2 2
4yt + 2w =p +w’ =R,

and so
pdp+wdw — 0.

Therefore

and sno

it =dg? 7 1R
giving
] e
172 cp 2 22
= — dsl
1 (p/R)? 4

This is a homogeneous, isotropic 3D space of (posisive) curvature 1/R2.
Negative and zero curvature are also possible, and setting p — Rr, all three
cases can be expressed as

" O dr? 2 2]
Al — 1 (5 + 202,

where & — =1, () or +1.

In general we must allow for K to te an arbitrary function of time R(t) (not
position since that would destroy homogeneity . thus we arrive &t

v 12 < 2 ‘1 \ / ‘l, 2 3 ‘1 ] - 3 'l\ |
ds“ =c“di~ R°(t) | 5 | red” | re :«:m"OdO“) .

\1—kr )
This is the Friedmann-Roberison-Welker metric. It was first derived by
Friedmann in 1922, and then more general'y by Robertson and Walker in
1935. It apnlics to any metric theory of gravity. not just CR.

Using p for the
radial coord, to
save r tor later:

sce below.

Deriving
Friedmann-Robertson-Walker

Metric

;Generality?




2 Maximally Symmetric Spaces: Uniqueness

We now show that the maximally symmetric spaces are uniquely specified by
a “‘curvature constant” K, and by the numbers of eigenvalues of the metric that
are positive or negative. That is, given two maximally symmetric metrics with the same
K and the same numbers of eigenvalues of each sign, it will always be possible to find a
coordinate transformation that carries one metric wnto the other. Armed with this
theorem, we shall be able in the next section to carry out an exhaustive study of
maximally symmetric spaces by simply constructing such metrics in one con-
venient coordinate system.

We showed in the last section that at any given point z in a maximally
symmetric space, we can find Killing vectors for which &;(x) vanishes and for
which ;. () is an arbitrary antisymmetric matrix. It follows then that the co-

Justification of previos step-slide, Weinberg, gravitation & Cosmology




786 13 Symmetric Spaces . e
Justifica

This is one rather obvious way to carry out this construction. (See Figure 13.1.)
Consider a Hat (¥ + 1) dimensionsal space, with metric given by

generali

N N " > 1
- dt? = Vg ot dxP = C, da’dz" + K~ dz (13.3.1)
- R i.e. spatial terms only. gu: — 0 because isctropy — no preferred direction
(cf Schwarzschild). For dli? we look for a 3D-space of consiant curvature,
where €', 13 & constant ¥ = N matrix and K 12 scme constant. We can embed a anzlagous to the surface of a sphere.
non-Euclidean N-dimenswonal space in this Lﬁrger Space by restrieting the vanables Consider the surfacc of a sphere in Euclicean 4D. Using Cartesian coor-
* and ] surf f < R C sond hora) : B dinates (z,y,2,w), but replacing (z,.2) by spherical polars (p,@,0), we Using p for the
* and 2 to the surfece of a sphere (or psendosphera): bave rudinl coord. o
di? = dp? + o d0* + du®, save r for later;
Y v | o where d€)? is short-hand for the angular terms. Also sce below.
1O, 22" + - ] (13.3.2)
v z .
2+ + 224w = p’ +w? = R,
~x=0 and 8o
k pdp+wdw — 0.
| "
- ~ Therefore Lo )
o~ ~ du? = P4 _ P
so‘m - w2 o Rg _ p21
and so 2
9 dp 2 12
5+ ptdSYE,
\\ R'.' —_ p) p
/ 2 giving )
) dg* g a2
di* = ——— + p*dQ*.
Ix|=1 \ Alxl=1 1 (p/R)?
X ¥ This is a homogencous, isotropic 3D space of (posisive) curvature 1/R?,
| Negative and zero curvature are also possible, and setting p — Rr, all three
: / cases can be expressed as
N [ dr? o )
\ ' / At — 12 (g +r2d0?)
| 1 — kr? b
| where & — =1, 0 or +1.
I
. Beni Corles In general we must allow for R to be an arbitrary function of time R(t) (not
\\ // de gl ; (');;9 poeition since that would destroy homogeneity), thus we arrive at
~ o
ruQ ds® =c*di*  R(t) l\‘l ”k:'z | redo? r"'sill"(?d()'“") .
This is the Friedmann-Roberison-Welker metric. It was first derived by
ﬁgure 13.1 H(")l‘(*-(’ﬂ"‘.lilﬂl of {)0”\%4‘- on a Bph"l‘f‘ h.‘, pl")i"l.‘.t‘l.(_ll‘l onto the cquat oriel Friedmann in 1922, and then more generally by Robertson and Walker in

v . ‘ " S 1935. It applics to any metric theory of gravity, not just CR.
plans. Note that two pomnts on the sphere correspond o each projecied poinl will P s 1 OF BRI, HOT

given eocordinates af,

) 18 face, dz* 1 given by - . .
AR SR 3 Maximally Symmetric Spaces: Construction
d;"' - K x((".n::" d:ﬁ"‘-
3 Maximally symmetric spaces are essentially unique. so we can learn all about
K*(C, 2" dz")? them by constructing examples with arbitrary curvature K in any way we like.

B (1 — K("._,.A:“;’)
and therefore (13.3.1) gives
: _ K ¥ 2 :
- dt? = C,_ dz" dz" + L (Cy e de”) (13.3.3)

v (1 - KC,2"x")




COSMOLOGY

COSMOGRAPHY



For homogeneous & isotropic Universe: T#” = diag(pc?, — P, — P, —P)

Substitute FRW metric in g,, —> I'g, —> R ;—> R, — R

What you get out is:

144 OP iSpUPNLS |

00- or time-time component:

ii- or space-space components:
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Comoving Coordinates

¢ Remaining degree of freedom (preserving homogeneity and
1sotropy) 18 an overall scale factor that relates the geometry (fixed
by the radius of curvature R) to physical coordinates — a function
of time only

our conventions are that the scale factor today a(ty) = 1

e Similarly physical distances are given by d(t) = a(t)D,
da(t) =a(t)D g
e Distances in capital case are comoving 1.€. they comove with the

expansion and do not change with time — simplest coordinates to
work out geometrical effects



Hubble Parameter

e Usetul to define the expansion rate or Hubble parameter

1 da

H(t) — — — definition

a, dt

since dynamics (Einstein equations) will give this directly as

H(a) = H(t(a))

e Time becomes

= it =
/ ( / all CL) <«— the details of cosmology

¢ Conformal time becomes

[ o= am
= a’H (a

conformal transformation
tries to eliminate expansion

effect. convenient for EMagnetic because conformal

transformation pre s Maxwell equation in Minkowsky



Redshift

e Wavelength of light “stretches” with the scale factor, so that it 1s
convenient to define a shift-to-the-red or redshift as the scale factor
Increases

A1) 1 _
oA _ v _
N v

e Given known frequency of emission v/(a), redshitt can be precisely
measured (modulo Doppler shifts from peculiar velocities) —
interpreting the redshift as a Doppler shift, objects receed in an
expanding universe

e Given a measure of distance, D(z) = D(z(a)) can be measured



Time and Conformal Time

e Proper time
dr’ = dt* — do”

= dt* — a?(t)d%*
a(t) (dn® — dx°)

» Taking out the scale factor in the time coordinate dn = dt/a
defines conformal time — useful 1 that photons travelling radially
from observer then obey

dt

AD=An= | =
a

so that time and distance may be interchanged



Distance-Redshift Relation

e All distance redshift relations are bascd on the comoving distance

D(z)
D(a) = /dD / (

= —azdz)

==l / H(z

e Notc limiting casc is the Hubblc law

lim D(z) =2/H(z =0) = 2/H,

z—)

e Hubble constant usually quoted as Hy = 100h km s~! Mpc—,
observationally ~ ~ (.7; in natural units Hy = (2997.9)"'h Mpc™*
defines an inverse length scale



Horizon

e Distance travelled by a photon in the whole lifetime of the universe
defines the horizon

e By d7 = 0, the horizon is simply the conformal time elapsed

Ldtl—

~Dhori7,0n (f) — = U(t)
) @

e Since the horizon always grows with time, there is always a point
in time before which two observers separated by a distance D
could not have been 1n causal contact

e Horizon problem: why 1s the universe homogeneous and 1sotropic
on large scales, near the current horizon — problem deepens for
objects seen at early times, e.g. CMB



Evolution of Scale Factor
e FRW cosmology is fully specified if the function a(t) is given

e General relativity relates the scale factor with the matter content of
universe.

e Build the Einstein tensor (7, out of the metric and use Einstein
equation

G, = —8nG1,,

LR . 2
™ 1 (]; (L ]. l
x"',,- =—— Qe — | — -} = ()zj
* a a a 9% :




Einstein Equations

e [sotropy demands that the stress-cnergy tensor take the form
Th=p
T, = —pb,
where p 1s the energy density and p is the pressure

e So Einstein equations become




Friedman Equations

e More usual to see Einstein equations expressed in time not
conformal time

a dal da |
—_— T e—— T e— ,H ;
a dna dt s

i (a\"_d (&) _, d(da\_ da
a a) dnp\a) dt\dt) Tdi?

¢ Friedmann equations:

1 87

H?(a) A = 3 P
1 d%a A7 |
cqz 3 TP

e Convenient fiction to describe curvature as an energy density
component px = —3/(87Ga*R?) o a2



Critical Density
» Friedmann equation for H then reads

87l 817G
H*(a) = T(P+PA’) = "3

defining a critical density today p. 1n terms of the expansion rate

Pe

» In particular, its value today 1s given by the Hubble constant as

Pc(Z = O) — 3[[3/87('(} — 1.8788 x 10—29h,2g Cm_3

# Energy density today 1s given as a {raction of critical
(2 = p/pe|.—o- Radius of curvature then given by
R™2=H{(Q—1)

e If =1, p~ p.,then prr < p.or HyR < 1, universe is flat
across the Hubble distance. {2 < 1 negatively curved; €2 > 1
positively curved



Conservation Law

e Sccond Friecdmann equation, or acceleration cquation, simply
expresses energy conservation (why: stress energy 1s automatically
conserved in GR via Bianchi identity)

dpV + pdV =0
dpa® + pda® = 0

pa’ + 3gpa3 + 3gpa3 =)
a a

0 a
—=—-3(1+w)- ) =
3 (1+w)= w=p/p
e If w = const. then the energy density depends on the scale factor
—3(14w)

as p x a



Acceleration Equation

e Time derivative of (first) Friedman equation

1% v - o] - 5
(116(1;3 87;6' pC: = 47;(;[ 3(1 +we)pe
é% - 47;(;[(1 ~ 3we)pe]
_ 47;G(p_|_pk-—l—3p-|-3pk')
= 47;(;;(1 + 3w)p

e Acceleration equation says that universe decelerates if w > —1/3



Multicomponent Universe

e The total energy density can be composed of a sum of components
with differing equations of state

pla) = qu;(a) . Zpi(a' =1)a3),  Q; = pi/pelat

o Important cases: nonrelativistic matter p,,, = mn,, x a2,
w,, = 0; relativistic radiation p, = En, = vn, < a™*,w, = 1/3;
“curvature” px o< a~?, wx = —1/3; constant energy density or

cosmological constant gy o< a’, wp = —1
e Or generally with w, = p./p. = (p+ px)/(p + Pk)

— [ dlna3(1+w.(a))

pela =1)e
ng— [dlna3(1+we(a))

pe(a)
H*(a)



Expansion Required

¢ Friedmann equations “predict” the expansion of the universe.
Non-expanding conditions da/dt = 0 and d?a/dt* = 0 require

p=—pPk  p=—3Ip
1.e. a positive curvature and a total equation of state
w=p/p=-1/3
e Since matter 1S known to exist, one can in principle achieve this
with

P = Pm+ Pr = —Pr = —3P = 3pA
PA = _ng Pm = _ng
Einstein introduced pp for exactly this reason — “biggest blunder”™;
but note that this balance is unstable: p,, can be perturbed but p,, a

true constant cannot



Expressing Distances in an Expanding Universe

The geometry and expansion rate of the Universe effects angular sizes and distances
measured. Integrate over components of RW metric.
defines causality

Dy =c¢/H, > Hubble Distance (distance light travels in Hubble time, ty; = 1/H,)

Dc= Dy / z Edz .~ Radial Co-moving Distance

0o E(z
Dy = D¢ (flat) = Transverse Co-moving Distance, differs for curved space (see

_IOgg 2000) | E t " IntrinsicSize = dOxD;,(z) | D,(z) = D,,(2)/(1 + 2)
D, = L(proper length)/0(angular size) = Dy,/(1+z) = Angular Distance

D, = sqrt (L/4n*flux) = D\ (1+z) =DA(1+z)? -2 Luminosity Distance

Homework generate plots of DL,DA vs 2

If A =0 and flat geometry, then

for different cosmologies

D, =2c¢/H, [z/(G+1)] {1+[z/(G+1)]} where G = (1 + z)!2

See Ned Wright’s Javascript Cosmology Calculator for D; for different
cosmologies:

hitp.://www.astro.ucla.edu/~wright/CosmoCalc.html ~2 :
E(z)=\sqrt{\Omega m(1+z)"3+\Omega k(1+z)"2+\Omega \Lambda) '



http://www.astro.ucla.edu/~wright/CosmoCalc.html

Different Time/z Dependence for Different Cosmologies. Can we use it?
Luminosity distance vs z

Angular diameter distance vs z (plotting D; /Dy)
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redshift 2 Figurc3: The dimensionless laminosty distance Dy /Dy. The three carves are for the three

world models, (O, €14) = (1,0), solid; '0.06,0), dotted; and (0.9,0.8), éashed

Iigure 2: The dimensionless angular diameter distance Dy /D=, The three curves are for
the three world models, (Qw, Q4) — (1, 0), solid; (0.05,0), dotted; and (0.2,0.8), dashed.

Dy=c/H,= 3000h-'Mpc

At high z, angular diameter distance is flat, =0 — solid
such that 1 arcsec is about 5 kpc. ’

open, A=0 — dotted
flat, non-zero A - dashed

(from Hogg 2000 astro-ph 9905116)



